"Magnifección" ¿una solución a la producción de anticuerpos recombinantes en situaciones de epidemia/pandemia?

Iris Asensio García

Resumen


Ciertas situaciones de emergencia, como la provocada por el último brote epidémico del virus del Ébola, crean la necesidad de producir, rápidamente y a gran escala, antígenos y anticuerpos útiles en la elaboración de vacunas. La biotecnología cuenta con varios sistemas de producción de proteínas recombinantes, pero no todos son capaces de responder eficientemente a este tipo de demandas. Una buena alternativa es el empleo de las plantas como biofactorías. Existen varios métodos para lograr la expresión heteróloga de proteínas en plantas, desde los utilizados para obtener plántas transgénicas, hasta la infección con vectores virales que da lugar a elevados niveles de expresión transitoria. Uno de ellos es la "magnifección" (de magnifection), que combina el uso de vectores virales deconstruidos, y clonados entre los bordes derecho e izquierdo del T-ADN de una cepa de Agrobacterium, con la agroinfiltración realizada a escala industrial en plantas cultivadas en invernadero. Prporciona rendimientos de producción de hasta 5 g de proteína recombinante por kg de biomasa en solo 4-10 días. La metodología se ha aplicado para obtener los anticuerpos de "ZMapp", el suero que ha dado buenos resultados en el tratamiento de infeccciones por el virus del Ébola en humanos, así como otras proteínas de interés terapéutico.

Texto completo:

PDF

Referencias


Chen, Q. 2008. Expression and purification of pharmaceutical proteins in plants. Biological Engineering 1:291-321.

Chen, Q. y Lai, H. 2013. Plant-derived virus-like particles as vaccines. Human Vaccines & Immunotherapeutics 9:26-49.

Chen, Q., He, J., Phoolcharoen, W. y Mason, H.S. 2011. Geminiviral vectors based on bean yellow dwarf virus for production of vaccine antigens and monoclonal antibodies in plants. Human Vaccines 7:331-338.

Chen, Q., Lai, H., Hurtado, J., Stahnke, J., Leuzinger,Ky Dent,M.2013. Agroinfiltration as an effective and scalable strategy of gene delivery for production of pharmaceutical proteins. Advanted Techniques in Biology & Medicine 1:103.

Choi, W.Y., Hong, K.J., Hong, J.E. y Lee, W.J. 2015. Progress of vaccine and drug development for Ebola preparedness. Clinical ans Experimental Vaccine research 4:11-16.

Chung, S.M., Vaidya, M. y Tzifira, T. 2006. Agrobacterium is not alone: gene transfer to plants by viruses and other bacteria. Trends In Plant Science 11:1-4.

Dohi, K., Nishikori, M., Tamai, A., Ishikawa, M., Meshi, T. y Mori, M. 2006. Inducible virus-mediated expression of a foreign protein in suspension-cultured plant cells. Archives of Virology 151:1075-1084.

García, D.J. 2010. Plantas como fábricas de proteínas recombinantes humanas. Cultura del Cuidado Enfermería 7:39-50.

Gelvin, S.B. 2003. Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiology and Molecular Biology Reviews MMBR 67:14701-14706.

Giritch, A., Marillonnet, S., Engler, C., van Eldik, G., Botterman, J., Klimyuk, V. y Gleva, Y. 2006. Rapid high-yield expression of full-size IgG antibodies in plants coinfected with noncompeting viral vectors. Proceeding of the National Academy of Science of the United states of America. 103:14701-14706.

Gleba, Y., Klimyuk, V. y Marillonnet, S. 2005. Magnifection - a new platform for expressing recombinant vaccines in plants. Vaccine. 23:2042-2048.

Gleba, Y., Klimyuk, V. y Marillonnet, S. 2007. Viral vectors for the expression of proteins in plants. Current Opinion in Biotechnology 18:134-141.

Gleba, Y., Marillonnet, S., y Klimyuk, V. 2004. Engineering viral expression vectors for plants: the “full virus” and the “deconstructed virus” strategies. Current Opinion in Plant Biology 7:182-188.

Grimsley, N., Hohn, B. y Walden, R. 1986. “Agroinfection”, an alternative route for viral infection of plants by using the Ti plasmid. Proceedings of the National Academy of Science of the United States of America 83:3282-3286.

He, J., Lai, H., Brock, C. y Chen, Q. 2012. A novel system for rapid and cost-effective production of detection and diagnostic reagents of the West Nile virus in plants. Journal of Biomedicine & Biotechnology 2012:1-10.

Huang, Z., Chen, Q., Hjelm, B., Arntzen, C. y Mason, H. 2009. ADNA replicon system for rapid high-level production of virus-like particles in plants. Biotechnology and Bioengineering 103: 706-714.

Huang, Z., Phoolcharoen, W., Lai, H., Piensook, K., Cardineau, G., Zeitlin, L., Whaley, K.J., Arntzen, C., Mason, H. y Chen, Q. 2010. High-level rapid production of fullsize monoclonal antibodies in plants by a single-vector DNA replicon system. Biotechnology and Bioengineering 106:9-17.

Lai, H., He, J., Engle, M., Diamond, M.S. y Chen, Q. 2012. Robust production of viruslike particles and monoclonal antibodies with fminiviral replicon vectors in lettuce. Plant Biotechnology Journal 10:95-104.

Lai, H., Engle, M., Fuchs, A., Keller, T., Johnson, S., Gorlatov, S., Diamond, M.S. y Chen, Q. 2010. Monoclonal antibody produced in plants efficiently treats West Nile virus infection in mice. Proceedings of the National Academy of Science of the United States of America 107:2419-2424.

Loza-Rubio, E. y Gómez-Lim, M.A. 2006. Producción de vacunas y otros compuestos biológicos en plantas transgénicas. Veterinaria México. 37:441-455.

Maliga, P. 2004. Plastid transformation in higher plants. Anual Review of Plant Biology 55:289-313.

Marillonnet, S., Thoeringer, C., Kandzia, R., Klimyuk, V. y Gleba, Y. 2005. Agrobacterium tumefaciens-mediated transfection of viral replicons for efficient transient expression in plants. Nature Biotechnology 23:718-723.

Marillonnet, S., Giritch, A., Gils, M., Kandzia, R., Klimyuk, V. y Gleba, Y. 2004. In planta engineering of viral RNA replicons: efficient assembly by recombination ofDNA modules delivered by Agrobacterium. Proceedings of the National Academy of Science of the United States of America 101:6852-6857.

Nester, E.W. 2015. Agrobacterium: nature´s genetic engineer. Frontiers in Plant Science 5: 730.

Obembe, O.O., Popoola, J.O., Leelavathi, S. y Reddy, S.V. 2011. Advances in plant molecular farming. Biotechnology Advances 29:210-222.

Olinger, G.G.Jr., Pettitt, J., Kim, D., Working, C., Bohorov, O., Bratcher, B., Hiatt, E., Hume , S.D., Johnson, A.K., Morton, J., Pauly, M., Whaley, K.J., Lear, C.M., Biggins, J.E., Scully, C., Hensley, L. y Zeitlin, L. 2012. Delayed treatment of Ebola virus infection with plant-derived monoclonal antibodies provides protection in Rhesus macaques. Proceedings of the National Academy of Science of the Unites States of America 109:18030-18035.

Phoolcharoen, W., Bhoo, S.H., Lai, H., Ma, J., Arntzen, C.J., Chen, Q. y Mason, H.S. 2011. Expression of an immunogenic Ebola immune complex in Nicotiana benthamiana. Plant Biotechnology Journal. 9:807-816.

Potera, C. 2012. Vaccine manufacturing gets boost from tobacco plants. Canada-based Medicago opens U.S. facility to exploit its influenza vaccine production method. Genetic Engineering and Biotechnology News 32:8-10.

Qiu, X., Audet, J., Wong, G., Pillet, S., Bello, A., Cabral, T., Strong, J.E., Plummer, F., Corbett, C.R., Alimonti, J.B. y Kobinger, G.P. 2012. Successful treatment of Ebola virus-infected cynomolgus macaques with monoclonal antibodies. Science Translational Medicine. 4:138-181.

Qiu, X., Audet, J., Wong, G., Fernando, L., Bello, A., Pillet, S., Alimonti, J.B. y Kobinger, G.P. 2013. Sustained protection against Ebola virus infection following treatment of infected non humanp rimates with ZMAb. Scientific Reports 3.

Qiu, X., Wong, G., Audet, J., Bello, A., Fernando, L., Alimonti, J.B., Fausther-Bovendo, H., Wei, H., Aviles, J., Hiatt, E., Johnson, A., Morton, J., Swope, K., Bohorov, O., Bohorova, N., Goodman, C., Kim, D., Pauly, M.H., Velasco, J., Pettitt, J., Olinger, G.G. Whaley, K., Xu, B., Strong, J.E., Zeitlin, L. y Kobinger, G.P. 2014. Reversion of advanced Ebola virus disease in nonhuman primates with “Zmapp”. Nature 514:47-53.

Santi, L., Batchelor, L., Huang, Z., Hjelm, B., Kilbourne, J., Arntzen, C.J., Chen, Q. y Mason, H.S. 2008. An efficient plant viral expression system generating orally immunogenic Norwalk virus-like particles. Vaccine 26:1846-1854.

Vitale, A. y Pedrazzini, E. 2005. Recombinant pharmaceuticals from plants: the plant endomembranesystem as bioreactor. Molecular Interventions 5:216-225.

World Health Organization 2014. Potential Ebola therapies and vaccines. WHO consultation on potential Ebola therapies and vaccines: background document for participants.

Wylie, S.J., Zhang, C., Long, V., Roossinck, M.J., Koh, S.H., Jones, M.G., Iqbal, S. y Li, H. 2015. Differential responses to virus challenge of laboratory and wild accesions of Australian species of nicotiana, and Comparative analysis of RDR1 gene sequences. PloS One 10.

Xu, J., Dolan, M.C., Medrano, G., Cramer, C.L. y Weathers, P.J. 2012. Green factory: plants as bioproduction platforms for recombinant proteins. Biotechnology Advances 30:1171-1184.

Zhang, X. y Mason, H. 2006. Bean yellow dwarf virus replicons for high-level transgene expression in transgenic plants and cell cultures. Biotechnology and Bioengineering 93:271-279.




DOI: http://dx.doi.org/10.18002/ambioc.v0i14.5543

Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2018 Iris Asensio García

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.

Ambiociencias

Contacto: ambiociencias@unileon.es
Soporte técnico: journals@unileon.es

1988-3021 (Ed. impresa)

Editada por el Área de Publicaciones de la Universidad de León