Avances en la terapia de la leucemia infantil

Riccardo Masetti

Resumen


En esta revisión se describen las características generales de las formas más frecuentes de leucemia, especialmente de la leucemia infantil, que ha sido el modelo de estudio para la biología de la enfermedad. Además, se presentan nuevos abordajes terapeúticos para el tratamiento de este tipo de leucemia: inhibidores de las proteínas tirosina-quinasas, anticuerpos específicos frente a los antígenos expresados por el clon leucémico o inhibidores de proteosoma y de las enzimas ADN metiltransferasas. El artículo concluye con la revisión de la eficacia de las denominadas células CAR-T (células T con Receptores de Antígenos Quiméricos) frente a las células cancerígenas de la leucemia.

Texto completo:

PDF

Referencias


Annesley, C.E. y Brown, P. (2015). Novel agents for the treatment of childhood acute leukemia.Therapeutic Advances in Hematology 6:61-79.

Brentjens, R.J., Rivière, I., Park, J.H., et al. (2011). Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractoryB-cell leukemias.Blood 118:4817-4828.

Brown, P., Hunger, S.P., Smith, F.O., Carroll W.L. y Reaman G.H. (2009). Novel targeted drug therapies for the treatment of childhood acute leukemia. Expert Review of Hematology 2:145-158.

Castaigne, S., Pautas, C., Terre, C., et al. (2012). Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study.Lancet 379:1508-1516.

Chmielewski, M. y Abken, H. (2015). TRUCKs: the fourth generation of CARs. Expert Opinion on Biological Therapy 15:1145-1154.

Cortes, J., Thomas, D., Koller, C., et al. (2004). Phase I study of bortezomib in refractory or relapsed acute leukemias.ClinicalCancerResearch 10:3371-3376.

Crick, F. y Watson, J. (1953). Astructure for deoxyribosenucleic acid. Nature 171:3.

Cooper, B.W., Kindwall-Keller, T.L., Craig, M.D., et al. (2015). A phase I study of midostaurin and azacitidine in relapsed and elderly AML patients. Clinical Lymphoma,Myeloma&Leukemia 15:428-32.e2.

Cooper, T.M., Cassar, J., Eckroth, E., et al. (2016). Aphase I study of quizartinib combined with chemotherapy in relapsed childhood leukemia: a therapeutic advances in childhood leukemia & lymphoma (TACL) study. Clinical Cancer Research 22:4014-4022.

Davila, M.L. y Brentjens, R.J. (2016). CD19-Targeted CAR T cells as novel cáncer immunotherapy for relapsed or refractory B-cell acute lymphoblastic leukemia. Clinical Advances in Hematology&Oncology 14:802-828.

Fan, M., Li, M., Gao, L., et al. (2017). Chimeric antigen receptors for adoptive T cell therapy inacutemyeloid leukemia. Journal ofHematology&Oncology 10:151.

Farber, S., Diamond, L.K., Mercer, R.D., Sylvester, R.F.J. y Wolff, J.A. (1948). Temporary remissions in acute leukemia in children produced by folic cid antagonist, 4-aminopteroyl-glutamic acid (aminopterin). The New England Journal of Medicine 238:787-793.

Gamis, A.S., Alonzo, T.A., Meshinchi, S., et al. (2014). Gemtuzumab ozogamicin in children and adolescents with de novo acute myeloid leukemia improves eventfree survival by reducing relapse risk: results from the randomized phase III Children's Oncology Group trial AAML0531. Journal of Clinical Oncology 32:3021-3032.

Grupp, S.A., Kalos, M., Barrett, D., Aplenc, R., Porter, D.L. y Rheingold SR. (2013). Chimeric antigen receptor–modified T cells for acute lymphoid leukemia. The New England Journal of Medicine 368: 1509-1518.

Horton, T.M., Pati, D., Plon, S.E., et al. (2007). Aphase 1 study of the proteasome inhibitor bortezomib in pediatric patients with refractory leukemia: a Children's Oncology Group study. Clinical Cancer Research 13:1516-1522.

Hu, S., Niu, H., Inaba, H., et al. (2011). Activity of the multikinase inhibitor sorafenib in combination with cytarabine in acute myeloid leukemia. Journal of the National Cancer Institute 103:893-905.

Kell, W.J., Burnett, A.K., Chopra, R., et al. (2003). A feasibility study of simultaneous administration of gemtuzumab ozogamicin with intensive chemotherapy in induction and consolidation in younger patients with acute myeloid leukemia. Blood 102:4277-4283.

Lee, S.J., Levitsky, K., Parlati, F., et al. (2016). Clinical activity of carfilzomib correlates with inhibition of multiple proteasome subunits: application of a novel pharmacodynamic assay. British Journal of Haematology 173:884-895.

Masetti, R., Bertuccio, S.N., Astolfi, A., et al. (2017). Hh/Gli antagonist in acute myeloid leukemia with CBFA2T3-GLIS2 fusion gene. Journal of Hematology&Oncology 10:26.

Meshinchi, S., Alonzo, T.A., Stirewalt, D.L., et al. (2006). Clinical implications of FLT3 mutations inpediatricAML.Blood 108:3654-3661.

Nguyen, B., Williams, A.B., Young, D.J., et al. (2017). FLT3 activating mutations display differential sensitivity to multiple tyrosine kinase inhibitors. Oncotarget 8:10931-10944.

Patnaik MM. (2017). Midostaurin for the treatment of acute myeloid leukemia. Future Oncology 13:1853-1871.

Pession, A., Masetti, R., Rizzari, C., et al. (2013). Results of the AIEOP AML 2002/01 multicenter prospective trial for the treatment of children with acute myeloid leukemia. Blood 122:170-178.

Pierro, J., Hogan, L.E., Bhatla, T. y Carroll W.L. (2017). New targeted therapies for relapsed pediatric acute lymphoblastic leukemia. Expert Review of Anticancer Therapy 17:725-736.

Pui, C.H. y Evans, W.E. (2006). Treatment of acute lymphoblastic leukemia. The New England Journal of Medicine 354:166-178.

Pui, C-H., Yang, J.J., Hunger, S.P., et al. (2015). Childhood acute lymphoblastic leukemia: progress throughcollaboration. Journal ofClinicalOncology 33:2938-2948.

Price, K.E., Saleem, N., Lee, G. y Steinberg, M. (2013). Potential of ponatinib to treat chronic myeloid leukemia and acute lymphoblastic leukemia. OncoTargets and Therapy 6:1111-1118.

Queudeville, M., Handgretinger, R. y Ebinger, M. (2017). Immunotargeting relapsed or refractory precursor B-cell acute lymphoblastic leukemia-role of blinatumomab.OncoTargetsandTheraphy 10:3567-3578.

Raetz, E.A., Cairo, M. S. , Borowitz, M. J . , et a l . (2015). Re-induction chemoimmunotherapy with epratuzumab in relapsed acute lymphoblastic leukemia (ALL): phase II results from children's oncology group (COG) study ADVL04P2.PediatricBlood&Cancer 62:1171-1175.

Ribera, J-M., Ferrer, A., Ribera, J. y Genescà, E. (2015). Profile of blinatumomab and its potential in the treatment of relapsed/refractory acute lymphoblastic leukemia. OncoTargetsandTherapy 8:1567-1574.

Savoldo, B., Ramos, C.A., Liu, E. et al. (2011). CD28 costimulation improves expansión and persistence of chimeric antigen receptor–modified T cells in lymphoma patients. The Journal of Clinical Investigation 121:1822-1826.

Shah, N.N., Stetler-Stevenson, M., Yuan, C.M., et al. (2015). Characterization of CD22 expression in acute lymphoblastic leukemia. Pediatric Blood & Cancer 62:964- 969.

Sasaki, K., Jabbour, E.J., Ravandi, F., et al. (2016). Hyper-CVAD plus ponatinib versus hyper-CVAD plus dasatinib as frontline therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: A propensity score analysis. Cancer 122:3650-3656.

Strati, P., Kantarjian, H., Ravandi, F., et al. (2015). Phase I/II trial of the combination of midostaurin (PKC412) and 5-azacytidine for patients with acute myeloid leukemia and myelodysplastic syndrome. American Journal of Hematology 90:276-281.

Teachey, D.T., Grupp, S.A. y Brown, V.I. (2009). Mammalian target of rapamycin inhibitors and their potential role in therapy in leukaemia and other haematologicalmalignancies. British Journal ofHaematology 145:569-580.

Thiollier, C., Lopez, C.K., Gerby, B., et al. (2012). Characterization of novel genomic alterations and therapeutic approaches using acute megakaryoblastic leukemia xenograftmodels. The Journal of Experimental Medicine 209:2017-2031.

Thomas, E.D., Lochte, H.L.Jr., Lu, W.C. y Ferrebee, J.W. (1957). Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. The New England Journal of Medicine 257:491-96.

Walter, R.B., Appelbaum, F.R., Estey, E.H. y Bernstein, I.D. (2012). Acute myeloid leukemia stemcells andCD33-targeted immunotherapy. Blood 119:6198-208.

Wei, G., Twomey, D., Lamb, J., et al. (2006). Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance. Cancer Cell 10:331-42.

Winters, A.C. y Bernt, K.M. (2017). MLL-rearranged leukemias—an update on science and clinical approaches .Frontiers in Pediatrics 5:4.




DOI: http://dx.doi.org/10.18002/ambioc.v0i0.5554

Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2018 Riccardo Masetti

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.

Ambiociencias

Contacto: ambiociencias@unileon.es
Soporte técnico: journals@unileon.es

1988-3021 (Ed. impresa)

Editada por el Área de Publicaciones de la Universidad de León