Bioplásticos de origen bacteriano: los poli-hidroxialcanoatos

José María Luengo

Resumen


En esta revisión se analizan diferentes aspectos relacionados con unos biomateriales muy interesantes, denominados genéricamente poli-hidroxialcanoatos o, de forma abreviada, PHAs. Estos compuestos son poliésteres de origen bacteriano que poseen propiedades y características muy similares a los
plásticos de origen petroquímico, razón por la que nos referiremos a ellos como bioplásticos. A lo largo del artículo, se describe su estructura química, sus propiedades, las rutas responsables de su biosíntesis y de su degradación, así
como sus múltiples aplicaciones clínicas, farmacológicas, medioambientales y, en suma, biotecnológicas.


Texto completo:

PDF

Referencias


Arias, S., Sandoval, A., Arcos, M., Cañedo, L.M., Maestro, B., Sanz, J.M., Naharro, G. y Luengo, J.M. 2008. Poly-3-hydroxyalkanoate synthases from Pseudomonas putida U: substrate specificity and ultrastructural studies. Microbial Biotechnology 1:170–176

Baekeland, L.H. 1910. Bakelite, a condensation product of phenols and formaldehyde and its uses. Journal ofFranklinInstitute 169:55–60.

Bian, Y.-Z., Wang, Y., Aibaidoula, G., Chen, G.-Q. y Wu, Q. 2009. Evaluation of poly(3- hydroxybutyrate-co-3-hydroxyhexanoate) conduits for peripheral nerveregeneration.Biomaterials 30:217–225.

Bogdawa, H., Delessert, S. y Poirier, Y. 2005. Analysis of the contribution of the betaoxidation auxiliary enzymes in the degradation of the dietary conju-gated linoleic acid 9-cis-11-trans-octadecanoic acid in the peroxisomes of Saccharomyces cerevisiae.Biochimica etBiophysicaActa1735:204-2013.

Chen, G.-Q. 2010. Plastics completely synthesized by bacteria: polyhydroxyalkanoates. En: "Plastics from Bacteria: Natural Functions and Applications". Editor: G.-Q. Chen. Microbiology Monographs Vo l . 14, pp.17-37. Springer, Berlin/Heidelberg, Alemania.

de Eugenio, L.I., Galán, B., Escapa, I.F., Maestro, B., Sanz, J.M., García, J.L. y Prieto, M. A. 2010. The PhaD regulator controls the simultaneous expression of the phagenes involved in polyhydroxyalkanoate metabolism and turnover in Pseudomonas putida KT2442. Environmental Microbiology 12:1591–1603.

de Eugenio, L.I., García, P., Luengo, J.M., Sanz, J.M., Román, J.S., García, J.L. y Prieto, M.A. 2007.Biochemical evidence that phaZ gene encodes a specific intracelular medium chain length polyhydroxyalkanoate depoly-merase in Pseudomonas putida KT2442: characterizacion of a paradig-matic enzyme. The Journal of Biological Chemistry 282:4951-4962.

Doudoroff, M. y Stanier, R.Y. 1959. Role of poly-β-hydroxybutyric acid in the assimilation of organic carbon by bacteria. Nature 183:1440-1442.

García, B., Olivera, E.R., Miñambres, B., Fernández-Valverde, M., Cañedo, L.M., Prieto, M.A., García, J.L., Martínez, M. y Luengo, J.M. 1999. Novel bio-degradable aromatic plastics froma bacterial source. Genetic and bio-chemical studies on a route of the phenylacetyl-CoA catabolon. The Journal of Biological Chemistry 274:29228–29241.

Gilbert, M. (2017) Plastics Materials: Introduction and Historical Development. En "Brydson's Plastics Materials" (Eighth Edition). Editor: M. Gilbert. pp. 1–18.

Elsevier (Butterworth-Heinemann), Oxford, Reino Unido. Iwata, T. y Tanaka, T. 2010. Plastics completely synthesized by bacteria: polyhydroxyalkanoates. En "Plastics from Bacteria: Natural Functions and Applications". Editor: G.-Q. Chen. Microbiology Monographs Vol. 14, pp.257-282. Springer, Berlin/Heidelberg, Alemania.

Jendrossek, D. y Pfeiffer, D. 2014. New insights in the formation of polyhydroxyalkanoate granules (carbonosomes) and novel functions of poly(3- hydroxybutyrate).EnvironmentalMicrobiology 16:2357-2373.

Khandal, D., Pollet, E. y Avérous, L. 2015. Polyhydroxyalkanoate-based multiphase materials. En: “Polyhydroxyalkanoate (PHA) based blends, composites and nanocomposites”. Editores: I. Roy y P.M. Visakh RSC Green Chemistry No. 30, pp.119-140. The Royal Society of Chemistry, Londres, Reino Unido.

Kobayasi, T., Uchino, K., Abe, T., Yamazaki, Y. y Saito, T. 2005. Novel intracelular 3- hydroxybutyrate-oligomer hydrolase in Wautersia eutropha H16. Journal of Bacteriology 187:5129-5135.

Lemoigne, M. 1923. Production d'acide b-oxybutyrique par certaines bactéries du groupe duB. subtilis.ComptesRendus de l'Academie des Sciences 176:1761.

Luengo, J.M., García, B., Sandoval, A., Naharro, G. y Olivera, E. R. (2003) Bioplastics frommicroorganisms.CurrentOpinioninMicrobiology 6:251–260.

Maestro, B., Galán, B., Alfonso, C., Rivas, G., Prieto, M.A. y Sanz, J.M. 2013. A new family of intrinsically disordered proteins: structural characterization of the major phasinPhaFfromPseudomonas putidaKT2440.PloSOne8:e56904. Moldes, C., Farinós, G.P., de Eugenio, L.I., García, P., García, J.L., Ortego, F., Hernández-Crespo, P., Castañera, P. y Prieto, M.A. 2006.Newtool for spreading proteins to the environment: Cry1Ab toxin immobilized to bioplastics. Applied Microbiology and Biotechnology 72:88–93.

Moldes, C., García, P., García, J.L. y Prieto, M.A. 2004. In vivo immobilization of fusión proteins on bioplastics by the novel tag BioF. Applied Environmental Microbiology 70:3205–3212.

Noda, I., Lindsey, S.B. y Caraway, D. 210. Plastics completely synthesized by bacteria: polyhydroxyalkanoates. En "Plastics from Bacteria: Natural Functions and Applications". Editor: G.-Q. Chen. Microbiology Monographs Vol. 14, pp.237-255.Springer, Berlin/Heidelberg, Alemania.

Obeso, J.I., Maestro, B., Sanz, J.M., Olivera, E.R. y Luengo, J.M. 2015. The loss of function of PhaC1 is a survival mechanism that counteracts the stress caused by the overproduction of poly-3-hydroxyalkanoates in Pseudomonas putidafadBA.EnvironmentalMicrobiology 17:3182-3194.

Olivera, E.R., Arcos, M., Naharro, G. y Luengo, J. M. 2010 Unusual PHA biosynthesis. En: "Plastics from Bacteria: Natural Functions and Applications". Editor: G.-Q. Chen. Microbiology Monographs Vol. 14, pp. 133–186. Springer, Berlin/Heidelberg, Alemania.

Olivera, E.R., Carnicero, D., Jodrá, R., Miñambres, B., García, B., Abraham, G.A., Gallardo, A., Román, J.S., García, J.L., Naharro, G. y Luengo, J.M. 2001. Genetically engineered Pseudomonas: a factory of new bioplastics with broad applications.EnvironmentalMicrobiology 3:612–618.

Parkes, A. 1866. On the properties of Parkesine, and its application to the arts and manufactures. Journal ofFranklinInstitute81:264–271. Porier Y. y Brumbley S.M. (2010) Plastics completely synthesized by bacteria: polyhydroxyalkanoates. En: "Plastics from Bacteria: Natural Functions and Applications". Editor: G.-Q. Chen. Microbiology Monographs Vol. 14, pp.187-211. Springer, Berlin/Heidelberg, Alemania.

Sandoval, A., Arias-Barrau, E., Arcos, M., Naharro, G., Olivera, E.R. y Luengo, J.M. 2007. Genetic and ultrastructural analysis of different mutants of Pseudomonas putida affected in the poly-3-hydroxy-n-alkanoate gene cluster. Environmental Microbiology 9:737–751.

Sandoval, A., Arias-Barrau, E., Bermejo, F., Cañedo, L., Naharro, G., Olivera, E.R. y Luengo, J. M. 2005. Production of 3-hydroxy-n-phenylalkanoic acids by a genetically engineered strain of Pseudomonas putida. Applied Microbiology and Biotechnology 67:97–105.

Slater, S.C., Voige, W.H. y Dennis, D.E. 1988. Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-β-hydroxybuty-rate biosynthetic pathway.The Journal ofBacteriology 170:4431-4436.

Villarrubia-Gómez, P., Cornell, S. y Fabres, J. 2018. Marine plastic pollution as a planetary boundary threat-The drifting piece in the sustainability puzzle. Marine Policy 96:213-220

Wang, L., Wang, Z.-H., Shen, C.-Y., You, M.-L., Xiao, J.-F. y Chen, G.-Q. 2010. Differentiation of human bone marrow mesenchymal stem cells grown in terpolyesters of 3-hydroxyalkanoates scaffolds into nerve cells. Biomaterials 31:1691–1698.

Williams, S. F. y Martin, D. P. (2005) Applications of polyhydroxyalkanoates (PHA) in medicine and pharmacy. En: "Biolymers Online". Editores: Y. Doi y A. Steinbüchel, Polyesters, Part 4, pp.91-128. John Wiley & Sons, Weinheim, Alemania.

Williams, S.F., Rizk, S. y Martin, D.P. 2013. Poly-4-hydroxybutyrate (P4HB): a new generation of resorbable medical devices for tissue repair and regeneration. Biomedical Technology 58:439–452.

Williamson, D.H. y Wilkinson, J.F. 1958. The isolation and estimation of the poly-β- hydroxybutyrate inclusions of Bacillus species. The Journal of General Microbiology 19:198-209.

Yamamoto, H., Kuno, Y., Sugimoto, S., Takeuchi, H. y Kawashima, Y. 2005. Surfacemodified PLGA nanosphere with chitosan improved pulmonary delivery of calcitonin by mucoadhesion and opening of the intercellular tight junctions. Journal of Controlled Release 102:373–381.

Zou, X.H., Li, H.M., Wang, S., Leski, M., Yao, Y.C., Yang, X.D., Huang, Q.J. y Chen G.-Q. 2009. The effect of 3-hydroxybutyrate methyl ester on learning and memory in mice. Biomaterials 30:1532-1541.




DOI: http://dx.doi.org/10.18002/ambioc.v0i16.5745

Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2019 José María Luengo

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.

Ambiociencias

Contacto: ambiociencias@unileon.es
Soporte técnico: journals@unileon.es

1988-3021 (Ed. impresa)

Editada por el Área de Publicaciones de la Universidad de León