La búsqueda del sensor celular del oxígeno, un camino al Nobel

María del Carmen Marín Vieira

Resumen


El premio Nobel de Medicina y Fisiología ha sido otorgado este año a los investi- gadores William Kaelin Jr., Sir Peter Ratcliffe y Gregg Semenza por descubrir los mecanismos moleculares mediante los cuales las células detectan los cambios en los niveles de oxígeno y se adaptan a ellos. Las células de un organismo requieren oxígeno para oxidar los nutrientes y generar energía. Sin embargo, los tejidos pueden verse temporalmente privados de oxígeno (hipoxia). Por ello, durante la evolución las células han adquirido mecanismos que les permiten detectar cam- bios en los niveles de oxígeno y responder a ellos adaptando el metabolismo celular. Estos procesos adaptativos son fundamentales durante el desarrollo em- brionario y el mantenimiento de la homeostasis en adultos. Además, su desre- gulación juega un papel fundamental en el desarrollo de enfermedades como la diabetes, el ictus o el cáncer. En este artículo me centraré en el trabajo que realizó uno de los galardonados, William Kaelin, el cual fue mi jefe y mentor en mi etapa posdoctoral. El Dr. Kaelin descubrió los mecanismos subyacentes a la respuesta a hipoxia estudiando una enfermedad rara que se caracteriza por la aparición de tumores altamente vascularizados, el síndrome de Von Hippel-Lindau. En la ac- tualidad, centra sus esfuerzos en el diseño de terapias dirigidas contra dianas múltiples que, us das en combinación, permitan en un futuro curar enferme- dades complejas como el cáncer.


Palabras clave


Hipoxia, oxígeno, Von Hippel-Lindau (VHL), HIF, hidroxila- ción, proteasoma, degradación proteica

Texto completo:

PDF

Referencias


Adams, P.D. y Kaelin, W.G. 1996. The Cellular Effects of E2F Overexpression. In Transcriptional Control of Cell Growth: The E2F Gene Family, P.J. Farnham, ed. (Berlin, Heidelberg: Springer Berlin Heidelberg), 79-93

Ashworth, A., Lord, Christopher, J. y Reis-Filho, JorgeS. 2011. Genetic Interactions in Cancer Progression and Treatment. Cell 145:30-38

Béroud, C., Joly, D., Gallou, C., Staroz, F., Orfanelli, M.T. y Junien, C. 1998. Software and database for the analysis of mutations in the VHL gene. Nucleic Acids Research 26:256-258

Berse, B., Brown, L.F., Van de Water, L., Dvorak, H.F. y Senger, D.R. 1992. Vascular permeability factor (vascular endothelial growth factor) gene is expressed differentially in normal tissues, macrophages, and tumors. Molecular Biology of the Cell 3:211-220

Chittenden, T., Livingston, D.M. y Kaelin, W.G. 1991. The T/E1A-binding domain of the retinoblastoma product can interact selectively with a sequence-specific DNA- binding protein. Cell 65:1073-1082

Cockman, M.E., Masson, N., Mole, D.R., Jaakkola, P., Chang, G.-W., Clifford, S.C., Maher, E.R., Pugh, C.W., Ratcliffe, P.J. y Maxwell, P.H. 2000. Hypoxia Inducible Factor-α Binding and Ubiquitylation by the von Hippel-Lindau Tumor Suppressor Protein. Journal of Biological Chemistry 275:25733-25741

Dolgin, E. 2017. DNA's secret weapon against knots and tangles. Nature 544: 284-286

Duan, D.R., Pause, A., Burgess, W.H., Aso, T., Chen, D.Y., Garrett, K.P., Conaway, R.C.,

Conaway, J.W., Linehan, W.M. y Klausner, R.D. 1995. Inhibition of

transcription elongation by the VHL tumor suppressor protein. Science

:1402

Firth, J.D., Ebert, B.L. y Ratcliffe, P.J. 1995. Hypoxic Regulation of Lactate Dehydrogenase A: INTERACTION BETWEEN HYPOXIA-INDUCIBLE

FACTOR 1 AND cAMP RESPONSE ELEMENTS. Journal of Biological Chemistry 270:21021-21027

Flemington, E.K., Speck, S.H. y Kaelin, W.G. 1993. E2F-1-mediated transactivation is inhibited by complex formation with the retinoblastoma susceptibility gene product. Proceedings of the National Academy of Sciences 90:6914

Gnarra, J.R., Zhou, S., Merrill, M.J., Wagner, J.R., Krumm, A., Papavassiliou, E., Oldfield, E.H., Klausner, R.D. y Linehan, W.M. 1996. Post-transcriptional regulation of vascular endothelial growth factor mRNA by the product of the VHL tumor suppressor gene. Proceedings of the National Academy of Sciences USA 93:10589-10594

Iliopoulos, O., Kibel, A., Gray, S. y Kaelin, W.G. 1995. Tumour suppression by the human von Hippel-Lindau gene product. Nat1ure Medicine 1:822-826

Iliopoulos, O., Levy, A.P., Jiang, C., Kaelin, W.G., Jr. y Goldberg, M.A. 1996. Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proceedings of the National Academy of Sciences U S A 93:10595-10599

Irwin, M., Marin, M.C., Phillips, A.C., Seelan, R.S., Smith, D.I., Liu, W., Flores, E.R., Tsai, K.Y., Jacks, T., Vousden, K.H., et al. 2000. Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature 407:645-648

Irwin, M.S., Kondo, K., Marin, M.C., Cheng, L.S., Hahn, W.C., y Kaelin, W.G. 2003.

Chemosensitivity linked to p73 function. Cancer Cell 3:403-410

Ivan, M., Haberberger, T., Gervasi, D.C., Michelson, K.S., Günzler, V., Kondo, K., Yang,

H., Sorokina, I., Conaway, R.C., Conaway, J.W., et al. 2002. Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor. Proceedings of the National Academy of Sciences USA 99:13459-13464

Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Asara, J.M., Lane, W.S. y Kaelin Jr, W.G. 2001. HIFα Targeted for VHL-Mediated Destruction by Proline Hydroxylation: Implications for O2 Sensing. Science 292, 464

Jaakkola, P., Mole, D.R., Tian, Y.-M., Wilson, M.I., Gielbert, J., Gaskell, S.J., Kriegsheim, A.v., Hebestreit, H.F., Mukherji, M., Schofield, C.J., et al. 2001. Targeting of HIF-α to the von Hippel-Lindau Ubiquitylation Complex by O2-

Regulated Prolyl Hydroxylation. Science 292, 468

Iang, B.-H., Rue, E., Wang, G.L., Roe, R., y Semenza, G.L. 1996. Dimerization, DNA Binding, and Transactivation Properties of Hypoxia-inducible Factor 1. Journal of Biological Chemistry 271:17771-17778

Jost, C.A., Marin, M.C. y Jr, W.G.K. 1997. p73 is a human p53-related protein that can induce apoptosis. Nature 389:191-194

Kaelin Jr, W.G. 1997. Alterations in G1/S Cell-Cycle Control Contributing to Carcinogenesis. Annals of the New York Academy of Sciences 833:29-33

Kaelin, J.W.G. 2003. E2F1 as a Target: Promoter-Driven Suicide and Small Molecule Modulators. Cancer Biology & Therapy 2:47-53

Kaelin, W.G. 1998. Another p53 Doppelgänger? Science 281:57

Kaelin, W.G. 2007. von Hippel-Lindau Disease. Annual Review of Pathology: Mechanisms of Disease 2:145-173

Kaelin, W.G., Ewen, M.E. y Livingston, D.M. 1990. Definition of the minimal simian virus 40 large T antigen- and adenovirus E1A-binding domain in the retinoblastoma gene product. Molecular and Cellular Biology 10:3761

Kaelin, W.G., Krek, W., Sellers, W.R., DeCaprio, J.A., Ajchenbaum, F., Fuchs, C.S., Chittenden, T., Li, Y., Farnham, P.J., Blanar, M.A., et al. 1992. Expression cloning of a cDNA encoding a retinoblastoma-binding protein with E2F-like properties. Cell 70:351-364

Kaelin, W.G., Pallas, D.C., DeCaprio, J.A., Kaye, F.J. y Livingston, D.M. 1991. Identification of cellular proteins that can interact specifically with the T/ElA- binding region of the retinoblastoma gene product. Cell 64:521-532

Kaghad, M., Bonnet, H., Yang, A., Creancier, L., Biscan, J.-C., Valent, A., Minty, A., Chalon, P., Lelias, J.-M., Dumont, X., et al. 1997. Monoallelically Expressed Gene Related to p53 at 1p36, a Region Frequently Deleted in Neuroblastoma and Other Human Cancers. Cell 90:809-819

Kamura, T., Koepp, D.M., Conrad, M.N., Skowyra, D., Moreland, R.J., Iliopoulos, O., Lane, W.S., Kaelin, W.G., Elledge, S.J., Conaway, R.C., et al. 1999. Rbx1, a Component of the VHL Tumor Suppressor Complex and SCF Ubiquitin Ligase. Science 284:657

Kibel, A., Iliopoulos, O., DeCaprio, J.A. y Kaelin, W.G. 1995. Binding of the von Hippel- Lindau tumor suppressor protein to Elongin B and C. Science 269:1444

Kim, W.Y. y Kaelin, W.G. 2004. Role of VHL Gene Mutation in Human Cancer. Journal of Clinical Oncology 22:4991-5004

Lane, D.P. 1992. p53, guardian of the genome. Nature 358:15-16

Lonergan, K.M., Iliopoulos, O., Ohh, M., Kamura, T., Conaway, R.C., Conaway, J.W. y Kaelin, W.G. 1998. Regulation of Hypoxia-Inducible mRNAs by the von Hippel- Lindau Tumor Suppressor Protein Requires Binding to Complexes Containing Elongins B/C and Cul2. Molecular and Cellular Biology 18:732

Marin, M.C., Jost, C.A., Brooks, L.A., Irwin, M.S., O'Nions, J., Tidy, J.A., James, N., McGregor, J.M., Harwood, C.A., Yulug, I.G., et al. 2000. A common polymorphism acts as an intragenic modifier of mutant p53 behaviour. Nature Genetics 25:47-54

Marin, M.C., Jost, C.A., Irwin, M.S., DeCaprio, J.A., Caput, D. y Kaelin, W.G., Jr. 1998. Viral oncoproteins discriminate between p53 and the p53 homolog p73. Molecular and cellular biology 18:6316-6324

Masson, N., Willam, C., Maxwell, P.H., Pugh, C.W. y Ratcliffe, P.J. 2001. Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. EMBO Journal 20:5197-5206

Ohh, M., Park, C., Ivan, M., Hoffman, M., Kim, T.Y., Huang, L., Pavletich, N., Chau, V. y Kaelin, W. 2000. Ubiquitination of hypoxia-inducible factor requires direct binding to the β-domain of the von Hippel Lindau protein. Nature cell biology 2:423-427

Ohh, M., Yauch, R.L., Lonergan, K.M., Whaley, J.M., Stemmer-Rachamimov, A.O., Louis, D.N., Gavin, B.J., Kley, N., Kaelin, W.G. e Iliopoulos, O. 1998. The von Hippel-Lindau Tumor Suppressor Protein Is Required for Proper Assembly of an Extracellular Fibronectin Matrix. Molecular Cell 1:959-968

Patinha, D., Pijacka, W., Paton, J.F.R. y Koeners, M.P. 2017. Cooperative Oxygen Sensing by the Kidney and Carotid Body in Blood Pressure Control. Frontiers in Physiology 8:752

Qin, X.Q., Livingston, D.M., Kaelin, W.G. y Adams, P.D. 1994. Deregulated transcription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis. Proceedings of the National Academy of Sciences 91:10918

Shen, C. y Kaelin, W.G. 2013. The VHL/HIF axis in clear cell renal carcinoma. Seminars in Cancer Biology 23:18-25

Siemeister, G., Weindel, K., Mohrs, K., Barleon, B., Martiny-Baron, G. y Marmé, D. 1996. Reversion of Deregulated Expression of Vascular Endothelial Growth Factor in Human Renal Carcinoma Cells by von Hippel-Lindau Tumor Suppressor Protein. Cancer Research 56:2299

Stebbins, C.E., Kaelin, W.G. y Pavletich, N.P. 1999. Structure of the VHL-ElonginC- ElonginB Complex: Implications for VHL Tumor Suppressor Function. Science 284, 455

Varshney, N., Kebede, A.A., Owusu-Dapaah, H., Lather, J., Kaushik, M. y Bhullar, J.S. 2017. A Review of Von Hippel-Lindau Syndrome. Journal of Kidney Cancer VHL 4:20-29

Wang, G.L. y Semenza, G.L. 1993. Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. Journal of Biological Chemistry 268:21513-21518

Wang, G.L. y Semenza, G.L. 1996. Molecular basis of hypoxia-induced erythropoietin expression. Current Opinion in Hematology 3

Wizigmann-Voos, S., Breier, G., Risau, W. y Plate, K. 1995. Up-Regulation of Vascular Endothelial Growth Factor and Its Receptors in von Hippel-Lindau Disease- associated and Sporadic Hemangioblastomas. Cancer Research 55:1358-1364

Yu, F., White, S.B., Zhao, Q. y Lee, F.S. 2001. HIF-1α binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proceedings of the National Academy of Sciences 98:9630




DOI: http://dx.doi.org/10.18002/ambioc.v0i17.6209

Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2020 María del Carmen Marín Vieira

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.

Ambiociencias

Contacto: ambiociencias@unileon.es
Soporte técnico: journals@unileon.es

1988-3021 (Ed. impresa)

Editada por el Área de Publicaciones de la Universidad de León