Cuando los organismos crean minerales


  • Ismael Coronado Universidad de León


Palabras clave:

Biocristalización, Crecimiento cristalino, Diagénesis, Esqueletos, Fósiles, Matriz orgánica


Los sistemas bióticos y abióticos se entrelazan, en su máxima expresión, durante la formación de biominerales. Estos son minerales producidos por los organismos, ayudados de macromoléculas orgánicas, los cuales forman esqueletos y estructuras esqueléticas (como dientes, huesos, conchas, espículas…) de una manera precisa, que involucra una maquinaria celular sincronizada y que tienen una función biológica muy específica. El estudio de la biomineralización es multidisciplinar y tiene un enfoque diverso: ingeniería, biología, química, paleontología. Este artículo resume qué es la  biomineralización, cuándo aparece en la historia de la Tierra, tipos de biomineralización, el papel de la matriz orgánica en la biomineralización, los controles (genéticos y ambientales) de la biomineralización, así como el papel de los estudios sobre biomineralización empleando fósiles.


Los datos de descargas todavía no están disponibles.


Addadi, L., Aizenberg, J., Albeck, S., Berman, A., Leiserowitz, L. y Weiner, S. 1994. Controlled occlusion of proteins: a tool for modulating the properties of skeletal elements. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 248(1):185–198.

Bashkin, V. N. 2003. Modern Biogeochemistry. Dordrecht : Kluwer, New York, Estados Unidos.

Berman, A. 2008. Biomineralization of calcium carbonate. The interplay with biosubstrates. En Biomineralization: from nature to application, Volume 4 (Eds. Sigel, A., Sigel, H. y Sigel R. K.), pp. 167–205, John Wiley y Sons, Ltd., Londres, Reino Unido.

Checa, A. G., Macías-Sánchez, E., Harper, E. M. y Cartwright, J. H. E. 2016. Organic membranes determine the pattern of the columnar prismatic layer of mollusk shells. Proceedings of the Royal Society B: Biological Sciences. 283:1830.

Coronado, I., Fine, M., Bosellini, F. R. y Stolarski, J. 2019. Impact of ocean acidification on crystallographic vital effect of the coral skeleton. Nature Communications. 10(1):1–9.

Coronado, I., Pérez-Huerta, A. y Rodríguez, S. 2015. Crystallographic orientations of structural elements in skeletons of Syringoporicae (tabulate corals, Carboniferous): Implications for biomineralization processes in Palaeozoic corals. Palaeontology. 58(1):111–132.

Coronado, I. y Stolarski, J. 2019. Anisotropic lattice distortions caused by photosymbiosis in scleractinian corals. En Biomin XV, 15th International Symposium on Biomineralization (Schmahl, W. y Griesshaber, E.), pp. 61. Ludwig Maximilians University, Munich, Alemania.

Cusack, M., Dauphin, Y., Cuif, J. P., Salome, M., Freer, A. y Yin, H. 2008. Micro-XANES mapping of sulphur and its association with magnesium and phosphorus in the shell of the brachiopod, Terebratulina retusa. Chemical Geology. 253(3–4):172–179.

Dalbeck, P., England, J., Cusack, M., Lee, M. R. y Fallick, A. E. 2006. Crystallography and chemistry of the calcium carbonate polymorph switch in M. edulis shells. European Journal of Mineralogy. 18(5):601–609.

Dorozhkin, S. V. 2011. Calcium orthophosphates: occurrence, properties, biomineralization, pathological calcification and biomimetic applications. Biomatter. 1(2):121–164.

Falini, G., Albeck, S., Weiner, S. y Addadi, L. 1996. Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science. 271(5245):67–69.

Falini, G., Sartor, G., Fabbri, D., Vergni, P., Fermani, S. et al. 2011. The interstitial crystal-nucleating sheet in molluscan Haliotis rufescens shell: A bio-polymeric composite. Journal of Structural Biology. 173(1):128–137.

Fortey, R. A., Jackson, J. y Strugnell, J. 2004. Phylogenetic fuses and evolutionary explosions’: conflicting evidence and critical tests. Systematics Association. 66:41–65.

Hoffmann, T. D., Reeksting, B. J. y Gebhard, S. 2021. Bacteria-induced mineral precipitation: a mechanistic review. Microbiology. 167(4):001049.

Horodyski, R. J., y Mankiewicz, C. 1990. Possible Late Proterozoic skeletal algae from the Pahrump-Group, Kingston Range, Southeastern California. American Journal of Science. 290A:149–169.

Isa, Y. y Okazaki, M. 1987. Some observations on the Ca2+-binding phospholipid from scleractinian coral skeletons. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry. 87(3):507–512.

Keller, N. B., Demina, L. L. y Os’kina, N. S. 2007. Variations in the chemical composition of the skeletons of non-zooxanthellate scleractinian (Anthozoa: Scleractinia) corals. Geochemistry International. 45(8):832–839.

Kontoyannis, C. G. y Vagenas, N. V. 2000. Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy. Analyst. 125(2):251–255.

Kostrova, S. S., Meyer, H., Chapligin, B., Tarasov, P. E. y Bezrukova, E. V. 2014. The last glacial maximum and late glacial environmental and climate dynamics in the Baikal region inferred from an oxygen isotope record of lacustrine diatom silica. Quaternary International. 348:25–36.

Lowenstam, H. y Weiner, S. 1989. On biomineralization. pp. 324, Oxford University Press, New York, Estados Unidos.

Mann, S. 2001. Biomineralization: Principles and concepts in bioinorganic materials chemistry. pp. 198, Oxford University Press. New York, Estados Unidos.

Marin, F., Le Roy, N., Marie, B., Ramos-Silva, P., Bundeleva, I. et al. 2014. Metazoan calcium carbonate biomineralizations: macroevolutionary trends – challenges for the coming decade. Bulletin de La Societe Geologique de France. 185(4):217–232.

Mateos-Carralafuente, J. R., Coronado, I., Cózar, P. y Rodríguez, S. 2022. Gigantoproductid shell spiral and microstructure of tertiary layer: evaluation as taxonomical characters. Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 1–17.

Meibom, A., Stage, M., Wooden, J., Constantz, B. R., Dunbar, R. B. et al. 2003. Monthly Strontium/Calcium oscillations in symbiotic coral aragonite: Biological effects limiting the precision of the paleotemperature proxy. Geophysical Research Letters. 30(7):1418.

Müller, W. E. G. 2011. Molecular biomineralization: aquatic organisms forming extraordinary materials. pp. 404, Springer, Heidelberg, Alemania.

Pannier, S., y Legeai-Mallet, L. 2008. Hereditary multiple exostoses and enchondromatosis. Best Practice & Research Clinical Rheumatology. 22(1):45–54.

Pérez-Huerta, A. y Andrus C. F. T. 2010. Vital effects in the context of biomineralization. En Workshop on Biominerals and Biomineralization Processes, Vol. 7, Seminarios de la Sociedad Española de Mineralogía. (EL. Fernández-Díaz, L. y Astilleros, J. M.), pp. 35–45. Sociedad Española de Mineralogía, Madrid, España.

Pérez-Huerta, A., Coronado, I. y Hegna, T. A. 2018. Understanding biomineralization in the fossil record. Earth-Science Reviews. 179:95–122.

Porter, S. M. y Knoll, A. H. 2000. Testate amoebae in the Neoproterozoic Era: evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon. Paleobiology. 26(3):360–385.

Reimer, T., Dempster, T., Warren-Myers, F., Jensen, A. J. y Swearer, S. 2016. High prevalence of vaterite in sagittal otoliths causes hearing impairment in farmed fish. Scientific Reports. 6(1):1–8.

Różycka, M., Coronado, I., Brach, K., Olesiak-Bańska, J., Samoć, M. et al. (2019). Lattice shrinkage by incorporation of recombinant starmaker-like protein within bioinspired calcium carbonate crystals. Chemistry - A European Journal. 25(55):12740–12750

Samata, T. 1990. Ca-binding glycoproteins in molluscan shells with different types of ultrastructure. Veliger. 33(2):190–201.

Secor, D. H., Dean, J. M. y Laban, E. H. 1992. Otolith removal and preparation for microstructural examination. En Otolith Microstructure Examination and Analysis (Stevenson, D. K. y Campana, S. E.). Canadian Special Publication of Fisheries and Aquatic Sciences, 117:19–57.

Shore, A. J. 2021. Affinity of Ediacaran skeletal fauna and their environmental context. Tesis Doctoral, The University of Edinburgh, Reino Unido.

Stolarski, J. 2000. Origin and phylogeny of Guyniidae (Scleractinia) in the light of microstructural data. Lethaia. 33(1):13–38.

Stolarski, J. Coronado, I., Lampart-Kaluzniacka, M., Mazur, M. y Meibom, A. 2017. Calcium carbonate polymorphism in salmonid fish otoliths: Crystallography and biogeochemistry. En The 14th International Symposium on Biomineralization (BIOMIN XIV) from molecular and nano-structural analyses to environmental science, Tsukuba, Japón.

Tester, C. C. y Joester, D. 2013. Precipitation in liposomes as a model for intracellular biomineralization. Methods in Enzymology. 532:257–276.

Urey, H. C., Lowenstam, H. A. Epstein, S. y McKinney, C. R. 1951. Measurement of paleotemperatures and temperatures and the Southeastern United States. Bulletin of the Geological Society of America. 62:399–416.

Veis, A. 2008. Crystals and Life: an introduction. En Biomineralization (Eds. Sigel, A., Sigel, H. y Sigel, R. K.), pp. 1–35. John Wiley & Sons, Ltd. Londres, Reino Unido.

Viedma, C. y Soutullo, B. 2018. Minerales, vida y evolución. Enseñanza de Las Ciencias de La Tierra. 26(3):274–280.

Weiner, S. y Dove, P. M. 2003. An overview of biomineralization processes and the problem of the vital effect. Reviews in Mineralogy and Geochemistry. 54(1):1–29.

Weiner, S. y Traub, W. 1984. Macromolecules in mollusc shells and their functions in biomineralization. Phillosophical Transactions B. 304:421–438.

Wesson, J. A. y Ward, M. D. 2007. Pathological biomineralization of kidney stones. Elements.3(6):415–421.




Cómo citar

Coronado, I. (2022). Biomineralización: Cuando los organismos crean minerales. Ambiociencias, (20), 77–100.



Baúl de la ciencia