INTRODUCCION

La dificultad de los estudios directos sobre la herencia de los caracteres sanitarios, productivos y reproductivos en las especies ganaderas es función de la complejidad de su naturaleza genética, ya que las diferencias cuantitativas que se aprecian entre los caracteres citados, normalmente son controladas por una gran variedad de factores genéticos que interactúan entre sí, casi por completo, el genoma del animal, y por muchas influencias de origen no genético (ambientales). El estudio genético de tales características se ha facilitado considerablemente mediante el uso de los tests genéticos indirectos, que pueden estar correlacionados con aquéllas y que tienen una simple explicación mendeliana de la herencia.

En este sentido, los polimorfismos bioquímicos de los órganos, tejidos y fluidos animales ocupan una posición privilegiada en este contexto, como indicadores genéticos posiblemente correlacionados con varias características sanitarias, productivas y reproductivas. Precisamente, el establecimiento de las posibles correlaciones entre los caracteres citados, en las especies ganaderas, y una serie, cada vez más numerosa, de indicadores biológicos ha sido siempre uno de los objetivos a alcanzar, tanto en medicina veterinaria como en producción animal, por las implicaciones de tipo económico que podrían derivarse en los programas de selección y mejora de las especies ganaderas explotadas por el hombre.

En la especie bovina, los caracteres más investigados han sido los relacionados con la producción de leche y carne, por un lado, y los derivados de la esfera reproductiva, por otro, teniendo en cuenta el papel tan preponderante que en esta especie ganadera juega la inseminación artificial.

* Cátedra de Genética. Facultad de Veterinaria. León.
** C.E.N.S.Y.R.A. de Lugo.

Dentro de la producción cárnica, los aspectos más intensamente analizados han sido los relativos a índices de conformación, crecimiento y conversión, debiéndose a BOGART1 la más amplia revisión realizada en este sentido, en un período de tiempo que cubre 25 años. Así se han estudiado las correlaciones entre distintos rendimientos y los más variados parámetros sanguíneos: tipos celulares, aminoácidos, urea, nitrógeno no proteico, transaminasas, fosfatases, etc. Del mismo modo, desde que la Inmunogenética comenzó su crecimiento como ciencia, en el año 1940, la búsqueda de las correlaciones comentadas ha sido uno de sus aplicaciones de tipo práctico más desarrolladas en el último decenio, por dos razones fundamentales: en primer lugar, los parámetros utilizados se transmiten siguiendo las leyes mendelianas y, en segundo lugar, este tipo de relación puede establecerse bien por medio de la pleiotropía, bien a través de ligamiento entre dos loci o ya por la influencia de la heterocigosidad en un determinado locus.

Las publicaciones que adelantan la hipótesis de las posibles relaciones entre polimorfismos bioquímicos e índices de crecimiento y conversión son numerosas. Sin embargo, las conclusiones derivadas de los trabajos revisados no son similares, ya que, si en algunos casos aportan conclusiones positivas de correlaciones, en otros, los más numerosos, se sugieren tendencias1, para, finalmente, en otros, no encontrar diferencias significativas entre caracteres productivos y polimorfismos bioquímicos (ROWLAN et al.9).

En el presente trabajo, después de estudiar el crecimiento de terneros de la raza Rubia gallega, durante el período de 8 a 14 meses de edad, se estima, por un lado, la estructura genética de las poblaciones animales analizadas para los polimorfismos bioquímicos transferrina (Tf) y amila (Am), y, por otro, su posible correlación con dos características productivas de gran interés, el índice de crecimiento y el índice de conversión, a fin de extraer conclusiones propias con razas autóctonas.

MATERIAL Y METODOS

Animales.—Han estado representados por tres series de 28, 24 y 19 terneros machos de la raza Rubia gallega, elegidos por ascendencia y procedentes de vacas aprobadas para «madre de semental de selección» por la comisión de Admisión del Libro Genealógico de la raza Rubia gallega, y sometidos a la prueba de «performance test» en la Estación de testaje que el Ministerio de Agricultura posee en el C.E.N.S.Y.R.A. de Lugo. La edad, al comienzo del testaje, fue la de 8 meses, no siendo, en ningún caso, la diferencia de edad de los animales participantes en cada serie, superior a 20 días. Los tres testajes se terminaron, igualmente, a la edad de 14 meses.

Alimentación.—Todos los animales recibieron diariamente, en todas las pruebas, heno y dos raciones de pienso concentrado, suministradas a primera hora de la mañana y última de la tarde. La cantidad suministrada, por día y cabeza, fue igual para todos los animales de cada una de las tres series, calculándose en función del peso vivo medio del grupo, obtenido en los controles mensuales de peso del ganado.

Controles realizados.—Fueron los siguientes:

- Peso a la entrada de los terneros en testaje.—Después de un período de adaptación de quince días, se procedió a la primera pesada de los animales, a los ocho meses de edad. La pesada se realizó a primera hora de la mañana, estando el ganado en ayuno, desde la última comida del día anterior.
- Pesada mensual.—Se realizó cada treinta días, en las condiciones especificadas anteriormente.
- Peso al final del testaje.—Igualmente en ayunas, los animales se pesaron, por última vez, a la edad de 14 meses.
- Pienso consumido.—La cantidad suministrada se controló diariamente.

Parámetros fenotípicos estimados.—Se estimaron:

- Indice de crecimiento.—La ganancia en peso vivo, se estimó por diferencia entre las pesadas realizadas mensualmente, expresándose en kilogramos de ganancia del peso vivo, por novillo y día.
- Indice de conversión.—Estimado sobre el pienso consumido durante las pruebas y la ganancia total en peso vivo de los novillos, al final del testaje, se representa por los kilogramos de pienso consumido por kilogramo de ganancia del peso vivo, desde el comienzo al final del testaje.

Metodología laboratorial.—La identificación fenotípica de los polimorfismos bioquímicos transferrina (Tf) y amila (Am) se ha realizado sometiendo las muestras (suero sanguíneo) a una electroforesis horizontal sobre gel de almidón, usando los diferentes sistemas de buffer y corridos sugeridos por POULINK1 y GASPARSKI y STEVENS3, respectivamente, aunque modificados para adaptarlos a las condiciones ambientales (cámara frigorífica a 5\textdegree C) en que se realizaron los corridos electroforéticos.

RESULTADOS Y DISCUSION

Se analizarán desde tres orientaciones distintas.

Indices de crecimiento y conversión.—De la observación de la Tabla I, donde se resumen las estadísticas de los distintos controles realizados y los parámetros productivos, índice de crecimiento e índice de conversión, pueden derivarse consideraciones de gran interés.

El peso vivo medio ponderal alcanzado por los animales a la edad de 8 meses,
TABLA I
Índices de crecimiento y conversión en novillos de la raza Rubia gallega,
durante el período de tiempo desde los 8 a 14 meses de edad

<table>
<thead>
<tr>
<th>SERIES</th>
<th>I (n = 28)</th>
<th>II (n = 24)</th>
<th>III (n = 19)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso medio a los 8 meses (Kg p.v.)</td>
<td>298,21 ± 27,73</td>
<td>348,13 ± 50,33</td>
<td>333,95 ± 41,23</td>
</tr>
<tr>
<td>Peso medio a los 14 meses (Kg. p.v.)</td>
<td>525,96 ± 31,27</td>
<td>528,29 ± 52,07</td>
<td>524,21 ± 39,15</td>
</tr>
<tr>
<td>Ganancia media total (K. p.v.)</td>
<td>221,21 ± 45,56</td>
<td>180,17 ± 27,84</td>
<td>190,26 ± 24,83</td>
</tr>
<tr>
<td>Pienso medio total consumido por novillo (Kg)</td>
<td>1.128,12 ± 26,80</td>
<td>947,99 ± 39,98</td>
<td>927,16 ± 30,43</td>
</tr>
<tr>
<td>Índice de crecimiento (gr/día/animal)</td>
<td>1.251,43 ± 127,56</td>
<td>981,21 ± 151,30</td>
<td>1.056,37 ± 138,30</td>
</tr>
<tr>
<td>Índice de conversión (Kg pienso/Kg de ganancia)</td>
<td>5,000 ± 0,492</td>
<td>5,391 ± 0,030</td>
<td>4,954 ± 0,681</td>
</tr>
<tr>
<td>r (ind. crec./ind. conv.)</td>
<td>0,97</td>
<td>0,94</td>
<td>0,95</td>
</tr>
</tbody>
</table>

298,21 a 348,13 Kg. es importante, por ser indicativo de la positiva evolución presentada por esta raza, en el tiempo, en relación con su más representativa producción de carne. Sánchez García, al estudiar este problema en terneros de 6 meses de edad, comprueba, con 22 animales de dicha edad, que el peso alcanzado (269,50 Kg. p.v.) era superior al alcanzado por 18 machos, controlados de una forma similar, en el año 1965 (230,86 Kg. p.v.) y muy superior al de los datos extraídos del crecimiento de 62 machos, en el Centro Nacional de Selección y Descendencia de Fuenfotxo (Ourense), en el año 1971, a la edad comentada (200,36 Kg. p.v.). Aunque dicho autor no comprobar, igualmente, una gran variabilidad en relación con los crecimientos alcanzados por terneros de dicha edad, debida, probablemente, a una falta de fijación del parámetro fenotípico comentado, el peso observado en nuestro trabajo, a los ocho meses de edad, es realmente interesante, toda vez que extrapolaciones a la edad de los trabajos comentados, se traducirían, asimismo, en una evolución similar.

Para incidir en la capacidad que le asignamos a esta raza, como de aptitud cárnea, se ha elaborado la Tabla II, en la que, a título orientativo, se comparan los pesos alcanzados por los machos de la raza Rubia gallega a la edad estándar de 12 meses y los parámetros productivos, índices de crecimiento y conversión, con los alcanzados y estimados en otras razas nacionales de reconocida aptitud cárnea, y por otros autores, en condiciones similares.

Se comprueba que los tres parámetros analizados son muy similares a los obtenidos por Cima et al. en el año 1979, en la raza estudiada y del mismo orden que los estimados en la raza Pirenaica. En relación con la raza Asturiana, los resultados son sensiblemente diferentes, sobre todo los relacionados con el índice de conversión, si bien pueden deberse a que los animales asturianos testados presentaran, en mayor o menor grado, el carácter cón. Esta circunstancia nos parece indicar que los excelentes rendimientos que VALLEJO16 encontró en esta raza, en comparación con otras seis razas vacunas autóctonas, para una serie de características de la cola y de la carne, los relaciona con el carácter semiciclo de los vacunos con los que realizó la experimentación.

Como la alimentación de los lotes experimentales de animales con los que se han realizado las tres pruebas de testaje no fue suministrada ad libitum, sino racionada en proporción al peso, los parámetros comentados adquieren particular importancia al ser susceptibles de mejores incrementos, sobre todo los relacionados con el índice de crecimiento, ya que la respuesta del índice de conversión a una alimentación ad libitum no es aconsejable predecirla a priori.

Debe destacarse, asimismo, la correlación positiva tan elevada estimada entre el índice de crecimiento y el de conversión (r = 0,94 a 0,97), un poco sorprendente, no obstante, si tenemos en cuenta la heredabilidad de estos dos parámetros, son de valores diferentes, según la bibliografía consultada.

Por todas estas razones, creemos que la raza Rubia gallega debe considerarse como una población productiva, competitiva económicamente con cualquier otra raza, tanto local como importada. Conocido el empeño y la influencia de las razas Frisona y Pardo-Alpina, en las razas españolas de doble a triple aptitud, hace años, resultaba difícil justificar la utilización de la raza Rubia gallega como lechera. Convertida en estos últimos decenios en raza de carne, puede aspirar, apenas sin limitaciones, a mantener su propia personalidad como raza de carne.

Sobre esta base, las posibilidades de esta raza son muy alentadoras cuando se analiza el crecimiento de los machos en estudio. La Tabla III, donde se resume el crecimiento ponderal y la ganancia mensual en las tres series, durante el período de 8 a 14 meses de edad, junto a los datos individuales, aportan sugerencias bien interesantes. Ha podido comprobarse que la capacidad para el crecimiento compensatorio, durante este período, es muy elevada. Así, ha podido observarse algunos terneros que, con unos crecimientos mínimos durante los dos primeros meses de testaje (8 y 9 meses de edad), han sido capaces, a los 10 meses, de conseguir una ganancia diaria en peso vivo superior a los 2 kilogramos diarios.

Ha podido comprobarse que los mejores índices de crecimiento absoluto se han conseguido entre los 9 y 13 meses de edad, en cuyo momento las ganancias diarias
parecen disminuir sensiblemente, época muy particular al coincidir con la edad de la pubertad. La citada Tabla III la consideramos reveladora, porque de ella pueden derivarse acciones selectivas a desarrollar en un futuro inmediato, motivo por el que uno de los primeros objetivos en este contexto sería el conocer exactamente la curva de crecimiento de terneros y novillos gallegos, para basar su selección en los crecimientos más idóneos.

Estructura genética de las poblaciones.—La Tabla IV resume los fenotipos observados y esperados, las X^2 de adecuación al equilibrio de Hardy-Weinberg y las frecuencias génicas en las tres series de poblaciones animales investigadas y para los polimorfismos bioquímicos transferrina (Tf) y amilasa (Am). Se observa que, así como las frecuencias génicas estimadas para cada uno de los sistemas genéticos

<p>| TABLA IV |
|-----------------|------|------|------|
| Estructura genética de las poblaciones investigadas para los polimorfismos bioquímicos transferrina (Tf) y amilasa (Am) |</p>
<table>
<thead>
<tr>
<th>SISTEMAS GENÉTICOS</th>
<th>PARAMÉTROS</th>
<th>I ($n = 28$)</th>
<th>II ($n = 24$)</th>
<th>III ($n = 19$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRANSFERINA (Tf)</td>
<td>Numero de Fenotipos</td>
<td>TY A</td>
<td>obs.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>esp.</td>
<td>3,24</td>
<td>3,47</td>
</tr>
<tr>
<td></td>
<td>TY AD</td>
<td>obs.</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>esp.</td>
<td>11,61</td>
<td>10,56</td>
</tr>
<tr>
<td></td>
<td>TY AE</td>
<td>obs.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>esp.</td>
<td>0,95</td>
<td>0,73</td>
</tr>
<tr>
<td></td>
<td>TY D</td>
<td>obs.</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>esp.</td>
<td>10,42</td>
<td>8,07</td>
</tr>
<tr>
<td></td>
<td>TY DE</td>
<td>obs.</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>esp.</td>
<td>1,71</td>
<td>1,11</td>
</tr>
<tr>
<td></td>
<td>TY E</td>
<td>obs.</td>
<td>0,07</td>
<td>0,04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>esp.</td>
<td>1,23</td>
<td>2,50</td>
</tr>
<tr>
<td>Amilasa (Am)</td>
<td>Frecuencia Génetica</td>
<td>X^2 equilibrio</td>
<td>X^2 equilibrio</td>
<td>X^2 equilibrio</td>
</tr>
<tr>
<td></td>
<td>TY B</td>
<td>obs.</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>esp.</td>
<td>16,60</td>
<td>14,23</td>
</tr>
<tr>
<td></td>
<td>TY BC</td>
<td>obs.</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>esp.</td>
<td>9,82</td>
<td>8,50</td>
</tr>
<tr>
<td></td>
<td>TY C</td>
<td>obs.</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>esp.</td>
<td>1,48</td>
<td>1,27</td>
</tr>
<tr>
<td></td>
<td>X^2 equilibrio</td>
<td>0,28</td>
<td>0,73</td>
<td>0,80</td>
</tr>
<tr>
<td></td>
<td>X^2 equilibrio</td>
<td>0,77</td>
<td>0,77</td>
<td>0,84</td>
</tr>
<tr>
<td></td>
<td>X^2 equilibrio</td>
<td>0,25</td>
<td>0,23</td>
<td>0,16</td>
</tr>
</tbody>
</table>
investigados son similares a las halladas por VALLEJO et al. 11 en una población de 359 hembras de la raza Rubia gallega, por el contrario, las poblaciones de machos de las tres series de testaje, se encuentran en equilibrio genético, en contraposición con la población de hembras citadas, en donde dichos autores apreciaron una desviación al equilibrio genético para los polimorfismos Tf y Am del orden de P < 0.05 y P < 0.001, respectivamente.

Si en el sistema genético Tf la adecuación al equilibrio de Hardy-Weinberg observado en los machos de testaje puede deberse a que en estas poblaciones se ha realizado una lectura tri-alélica (TFA, TFD y TFB), en vez de la cuatri-alélica (TFA, TFD, TDF y TBF) realizada por VALLEJO et al. 11, en la población de hembras adultas, como lo demuestran los citados autores en el trabajo aludido, en relación con la Am la situación es bien distinta.

En el sistema Am 12, al analizar una población de 6 toros adultos, 36 vacas y su progenie, constituida por 35 terneros (machos y hembras), observan que la población de toros se adecuaba al equilibrio de Hardy-Weinberg, no así la de vacas y progenie, que se desvían significativamente (P < 0.10 y P < 0.05, respectivamente). La significativa desviación observada en la progenie de machos y hembras (P < 0.05), la menor significación presentada en las vacas (P < 0.10) y la nula en la de los toros, al igual de lo que ocurre en la población de machos del presente trabajo, en donde la población muestra equilibrio genético para los polimorfismos Tf y Am, inducen a pensar en la influencia del sexo, en este contexto, máxime cuando SÁNCHEZ GARCÍA 9 observa sistemáticamente, al analizar distintas poblaciones de animales, en relación con la duración de la gestación, que el porcentaje de hembras en la edad de machos es inferior al de machos, oscilando en las poblaciones investigadas del 51.02% al 58.67% de hembras nacidas.

La falta de adecuación de la progenie y de la población de vacas adultas al equilibrio de Hardy-Weinberg, la fundamentan, VALLEJO et al. 12, en una desviación de la segregación hacia un aumento de los homocigotos. El hecho de que en la población de terneros investigada aparezca igualmente un número de homocigotos (Am BB y Am CC) superior al de heterocigotos y, sin embargo, la población aparece en equilibrio genético, nos induce en última instancia a sugerir que el sexo y la anormal segregación de homocigotos deben influir en el equilibrio genético final de las poblaciones. Es evidente que en este trabajo, orientado a otros fines, no pueden aducirse, ni siquiera, sugerencias explicativas de estos hechos, pero la problemática es manifiesta, e incidiremos en ella, en trabajos posteriores.

Relación entre los polimorfismos Tf y Am y los índices de crecimiento y conversión. — En las Tablas V y VI se presentan, según fenotipos o genotipos, transferrínicos y amilásicos, respectivamente, los índices de crecimiento y conversión estimados en los machos de la raza Rubia gallega, durante el período de 8 a 14 meses de edad, para las tres series y el total general. Aunque, desde el punto de vista biométrico, no se han encontrado diferencias significativas entre los distintos fenotipos y para los parámetros citados, no obstante, se van a comentar las tendencias y resultados observados.

En general, han sido los animales que en su fenotipo poseen el alelo Tf0, los que han mostrado un índice de crecimiento mayor. En este sentido, los resultados presentes coinciden con los de YAMAMOTO 13 y MEDVEDEVA et al. 4, en relación con la asignación a un determinado fenotipo, de un mejor índice de crecimiento, particularidades que difieren, no obstante, según distintos investigadores. Asimismo,

TABLA V

<table>
<thead>
<tr>
<th>Estadísticos</th>
<th>SERIE I</th>
<th>SERIE II</th>
<th>SERIE III</th>
<th>TOTAL GENERAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parámetros</td>
<td>n</td>
<td>x</td>
<td>n</td>
<td>x</td>
</tr>
<tr>
<td>Tf AA</td>
<td>2</td>
<td>260,00</td>
<td>42,43</td>
<td>5</td>
</tr>
<tr>
<td>Tf AD</td>
<td>16</td>
<td>300,21</td>
<td>25,66</td>
<td>7</td>
</tr>
<tr>
<td>Tf AE</td>
<td>1</td>
<td>315,00</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>Tf DD</td>
<td>9</td>
<td>292,22</td>
<td>25,39</td>
<td>10</td>
</tr>
<tr>
<td>Tf DE</td>
<td>2</td>
<td>245,00</td>
<td>35,36</td>
<td>1</td>
</tr>
</tbody>
</table>

| F | 1,96 | 0,83 | 0,38 | 0,53 |

<table>
<thead>
<tr>
<th>CORRÉS DE REALIZADO EN PESO DE VIVIR A MESES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parámetros</td>
</tr>
<tr>
<td>Tf AA</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Tf AD</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Tf AE</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Tf DD</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Tf DE</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

| F | 0,37 | 1,41 | 0,19 | 1,79 |

<table>
<thead>
<tr>
<th>INGRESOS PRODUCTIVOS INCREMENTO EN PESO A MESES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parámetros</td>
</tr>
<tr>
<td>Tf AA</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Tf AD</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Tf AE</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Tf DD</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Tf DE</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

| F | 0,40 | 0,26 | 1,32 | 0,78 |

<table>
<thead>
<tr>
<th>PARAMETROS PRODUCTIVOS INDICE DE CRECIMIENTO A MESES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parámetros</td>
</tr>
<tr>
<td>Tf AA</td>
</tr>
<tr>
<td>1,42</td>
</tr>
<tr>
<td>Tf AD</td>
</tr>
<tr>
<td>0,39</td>
</tr>
<tr>
<td>Tf AE</td>
</tr>
<tr>
<td>1,07</td>
</tr>
<tr>
<td>Tf DD</td>
</tr>
<tr>
<td>1,32</td>
</tr>
<tr>
<td>Tf DE</td>
</tr>
<tr>
<td>1,78</td>
</tr>
</tbody>
</table>

| F | 1,12 | 2,03 | 2,60 | 0,58 |

<table>
<thead>
<tr>
<th>INDICES DE CRECIMIENTO EN PESO A MESES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parámetros</td>
</tr>
<tr>
<td>Tf AA</td>
</tr>
<tr>
<td>2,44</td>
</tr>
<tr>
<td>Tf AD</td>
</tr>
<tr>
<td>5,62</td>
</tr>
<tr>
<td>Tf AE</td>
</tr>
<tr>
<td>5,21</td>
</tr>
<tr>
<td>Tf DD</td>
</tr>
<tr>
<td>10,58</td>
</tr>
<tr>
<td>Tf DE</td>
</tr>
<tr>
<td>10,58</td>
</tr>
</tbody>
</table>

| F | 1,62 | 2,13 | 1,94 | 0,72 |
TABLA VI
Tipos de amilasa (Am) e índices de crecimiento y conversión en terneros de la raza Rubia gallega, durante el periodo de 8 a 14 meses de edad

<table>
<thead>
<tr>
<th>Estadísticos</th>
<th>SERIE I</th>
<th>SERIE II</th>
<th>SERIE III</th>
<th>TOTAL GENERAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parámetros</td>
<td>n x y</td>
<td>n x y</td>
<td>n x y</td>
<td>n x y</td>
</tr>
<tr>
<td>Am BB 17</td>
<td>293,24</td>
<td>24,36,15</td>
<td>342,00</td>
<td>52,44,14</td>
</tr>
<tr>
<td>Am BC 9</td>
<td>306,67</td>
<td>32,88,7</td>
<td>357,86</td>
<td>50,35,4</td>
</tr>
<tr>
<td>Am CC 2</td>
<td>302,50</td>
<td>31,89,2</td>
<td>360,00</td>
<td>53,15,1</td>
</tr>
<tr>
<td>F</td>
<td>0,70</td>
<td>1,28</td>
<td>1,66</td>
<td></td>
</tr>
<tr>
<td>Am BB 17</td>
<td>527,35</td>
<td>29,36,15</td>
<td>518,73</td>
<td>55,81,14</td>
</tr>
<tr>
<td>Am BC 9</td>
<td>525,67</td>
<td>36,02,7</td>
<td>545,86</td>
<td>47,80,4</td>
</tr>
<tr>
<td>Am CC 2</td>
<td>515,50</td>
<td>44,55,2</td>
<td>538,50</td>
<td>36,06,1</td>
</tr>
<tr>
<td>F</td>
<td>0,12</td>
<td>0,67</td>
<td>2,79</td>
<td></td>
</tr>
<tr>
<td>Am BB 17</td>
<td>1.128,72</td>
<td>29,90,15</td>
<td>940,04</td>
<td>37,48,14</td>
</tr>
<tr>
<td>Am BC 9</td>
<td>1.126,34</td>
<td>23,35,7</td>
<td>963,44</td>
<td>43,39,4</td>
</tr>
<tr>
<td>Am CC 2</td>
<td>1.131,01</td>
<td>26,00,2</td>
<td>946,50</td>
<td>52,11,1</td>
</tr>
<tr>
<td>F</td>
<td>0,03</td>
<td>0,96</td>
<td>1,26</td>
<td></td>
</tr>
<tr>
<td>Am BB 17</td>
<td>1.285,47</td>
<td>107,00,15</td>
<td>964,07</td>
<td>167,25,14</td>
</tr>
<tr>
<td>Am BC 9</td>
<td>1.203,33</td>
<td>158,27,7</td>
<td>1.022,29</td>
<td>134,26,4</td>
</tr>
<tr>
<td>Am CC 2</td>
<td>1.170,00</td>
<td>28,28,2</td>
<td>969,50</td>
<td>103,94,1</td>
</tr>
<tr>
<td>F</td>
<td>1,79</td>
<td>0,33</td>
<td>0,25</td>
<td></td>
</tr>
<tr>
<td>Am BB 17</td>
<td>4,582</td>
<td>0,418,15</td>
<td>5,492</td>
<td>1,116,14</td>
</tr>
<tr>
<td>Am BC 9</td>
<td>5,211</td>
<td>0,588,7</td>
<td>5,197</td>
<td>0,57,14</td>
</tr>
<tr>
<td>Am CC 2</td>
<td>5,311</td>
<td>0,019,2</td>
<td>5,317</td>
<td>0,37,14</td>
</tr>
<tr>
<td>F</td>
<td>2,16</td>
<td>0,23</td>
<td>0,02</td>
<td></td>
</tr>
</tbody>
</table>

Los polimorfismos estudiados, no van a tener ninguna efectividad, desde un punto de vista productivo, si bien esperamos seguir en esta temática, para conseguir una decisiva información.

RESUMEN

En una población de 71 terneros de la raza Rubia gallega, durante el período comprendido entre los 8 y 14 meses de edad, se controla los pesos mensuales y el peso total consumado por los animales, a fin de estimar los parámetros productivos, índices de crecimiento y conversión. Posteriormente, se analiza la estructura genética de dicha población para los polimorfismos bioquímicos transferrina (Tf) y amilasa (Am) y se correlaciona con los parámetros productivos comentados. El índice de crecimiento estimado para las Tf AA, Tf AD, Tf AE, Tf DD y Tf DE son los de 1.041,69, 1.112,93, 1.119,50, 1.128,48 y 1.159,00 gr/día, respectivamente, siendo los índices de conversión para los mismos tipos transferrinos, 5,324, 5,209, 4,928, 4,962 y 4,958 Kg de pienso consumido por Kg de ganancia diaria. En Relación con las Am BB, Am BC y Am CC, los índices de crecimiento estimados fueron 1.115,22, 1.104,90 y 1.052,40 gr/día, respectivamente, mientras que los índices de conversión, respectivos, se estimaron en 5,088, 5,158 y 5,264.

TRANSFERRIN AND AMYLASE TYPES IN RELATION TO GROWTH AND CONVERSION INDICES IN YOUNG BULLS RUBIA GALLEGU SPANISH CATTLE

SUMMARY

Growth rate (daily gain) and feed conversion efficiency are estimated on 71 young bulls of Rubia gallega spanish cattle, during include period from 8 to 12 months of age. Also data are tabulated on the transferrin and amylase gene and genotype frequencies, for finally to study the correlations between productive and genetic parameters. For the Tf AA, Tf AD, Tf AE, Tf DD and Tf DE, growth rate and feed conversion efficiency were 1041,69; 1112,93; 1119,50; 1128,48 and 1159,00 gr/day and 5,324; 5,209; 4,928; 4,962 and 4,958 Kg feed/Kg gain daily, respectively. For the Am BB, Am BC and Am CC, growth rate were 1115,22; 1104,90 and 1052,40 gr/day respectively and the feed conversion were 5,088; 5,158 and 5,264 Kg feed/Kg gain daily.

—92—

—93—
BIBLIOGRAFÍA

5) MAJÓN, I. L. (1973).—Razas españolas de ganado e investigación en grupos sanguíneos. Informe al C.S.I.C. en relación con las actividades del GEISHANA.

ESTUDIO GENÉTICO DE LOS FACTORES QUE INFLUYEN EN LA PRODUCCIÓN LACTEA DEL GANADO OVINO. IV. COMPARACIÓN ENTRE LOS MEDIOS DE ESTIMACION DE MAXIMA VEROSIMILITUD (ML) Y DE MÍNIMOS CUADRADOS (LS) PARA EL MÉTODO MIXTO

Por J. A. Carreño
F. San Primitivo

INTRODUCCIÓN

La influencia de los factores de variación genéticos y ambientales, sobre los caracteres productivos de los animales domésticos, se estuda generalmente mediante la utilización de análisis de varianza. Cuando para estos estudios se utilizan datos productivos, procedentes de registros de campo, los análisis de varianza suelen presentarse con subclases desiguales y fuertemente desequilibrados; incluso, en determinados casos, pueden manifestar una cierta desconexión entre subclases9. En estos casos, adquiere una especial importancia la metodología estadística empleada.

Los análisis de varianza que se utilizan para este tipo de estudios, generalmente siguen un modelo mixto, en el que los factores de tipo genético se consideran «aleatorios» y los ambientales «fijos». Entre los métodos de estimación paramétrica que con mayor frecuencia se han utilizado para el modelo mixto, figuran el de máxima verosimilitud (ML)10, 11, 12 y el de mínimos cuadrados (LS)13, 14. El análisis de varianza puede utilizarse, bien con la finalidad de cuantificar la importancia relativa de los factores de variación, en términos de proporción de varianza explicada por cada factor significativo, bien con objeto de estimar los efectos de los factores, representados por los términos que figuran en el modelo matemático.

Un factor de variación presenta, en cada uno de sus niveles o subclases, un efecto sobre la variable en estudio, que se corresponde con su desviación respecta a la media de la población, en esa subclase. Los métodos LS y ML permiten estimar estos efectos correspondientes a cada factor de variación.

El método ML proporciona estimaciones con propiedades estadísticamente muy

---94---

CATEDRA DE GENETICA
(Prof. Dr. M. VALLEJO VICENTE)

---95---