
POLÍGONOS. Revista de Geografía
2016, nº 28, 161-181
e ISSN – 2444–0272

Polígonos. Revista de Geografía, 28 (2016); 161-181

A PROTOTYPE OF AN OPEN HARDWARE-BASED
AUTOMATIC PHOTOGRAPHIC CAMERA TO
MONITOR SNOW COVER EVOLUTION AND
WEATHER PHENOMENA IN THE CONTEXT OF THE
FROZEN GROUND MONITORING: PERMARDUINO-
CAMERA

M.A. DE PABLO
Depto. de Geología, Geografía y Medio Ambiente. Universidad de Alcalá
C. DE PABLO S.
Especialista en electrónica. Madrid
M. RAMOS
Departamento de Física y Matemáticas. Universidad de Alcalá
M. PRIETO
Departamento de Automática. Universidad de Alcalá

Recibido: 29/12/2015
Aceptado: 25/05/2016

ABSTRACT: The study of permafrost and active layer thermal behavior require continuous
monitoring of ground temperatures as well as other additional parameters, including snow
cover, because of its isolation effect when the thickness is enough high. Typical monitoring
stations from Thermal State of Permafrost (TSP) network includes the air temperature monitor-
ing to derive snow thickness. Moreover, its low snow deep accuracy, this device return data
from one place each time. To know and study the snow onset, offset, duration and distribution
is sometimes required and the use of automatic digital photographic cameras contribute to have
an adequate approach. However, commercial automatic cameras are expensive. For that reason,
we developed a robust, simple, low-cost, open hardware-based (Arduino) prototype of an auto-
matic camera to take pictures and store them into an SD card (2 Gb) that allows more than 4
years of hourly continuous image acquisition. The device is powered by a small solar cell that
charges a li-po battery. The firmware allows a detailed monitoring of the device and error de-
tection, and configure the camera for its own. We used a TTL serial JPEG camera with CMOS
¼ inch sensor with 480x640 pixels in resolution, with NTCS video capacity to allow real-time
camera focus. The camera acquires images on panchromatic and near IR band. The fully oper-
ative prototype has been tested in Antarctica, and it was finally installed in Byers Peninsula in
order to study the snow cover evolution at the Limnopolar Lake CALM site. In this work we
present the prototype and its firmware to allow others to develop their own cameras to monitor
snow cover or any other phenomenological parameter.
KEY WORDS: Frozen ground; Snow cover; Digital automatic camera; Instrumentation.

PROTOTIPO DE CÁMARA FOTOGRÁFICA AUTOMÁTICA BASADA EN
HARDWARE ABIERTO PARA MONITORIZAR LA EVOLUCIÓN DE LA CUBIERTA
DE NIEVE Y FENÓMENOS METEOROLÓGICOS EN EL CONTEXTO DE LA
VIGILANCIA DEL SUELO CONGELADO: PERMARDUINO-CÁMARA

M.A. de Pablo, C. de Pablo S., M. Ramos, M. Prieto

Polígonos. Revista de Geografía, 28 (2016); 161-181

162

RESUMEN: El estudio permafrost y la capa activa requiere de la medición continuada de la
temperatura del terreno, y de otros parámetros adicionales, incluyendo el espesor de la capa de
nieve debido al efecto aislante que puede tener. Las estaciones típicas de estudio térmico del
permafrost (TSP en inglés), incluye la medida de la temperatura del aire a diferentes alturas
para derivar el espesor aproximado de la capa de nieve. Más allá de la baja resolución de este
método, estos termonivómetros sólo facilitan datos de un punto del territorio. Sin embargo,
conocer y estudiar la evolución y distribución de la cubierta de nieve requiere en muchos casos
del uso de cámara fotográficas automáticas, con el problema del alto coste de las mismas. Por
ello, hemos desarrollado un dispositivo robusto, simple, de bajo coste, y basado en el uso de
hardware libre (Arduino), capaz de tomar fotografías y almacenarlas en una tarjeta de memoria
SD (2 Gb) con capacidad para más de 4 años de actividad continuada. Este dispositivo está
alimentado por una placa solar y una batería Li-po. La cámara usada permite obtención de imá-
genes JPEG mediante el uso de un sensor CMOS de ¼ de pulgada e imágenes de hasta 480x640
píxeles de resolución. Además, dispone de salida NTCS de video que facilita las tareas de en-
foque en el campo. La cámara adquiere imágenes en el rango pancromático e infrarrojo cercano.
El prototipo funcional del dispositivo fue probado en la Antártida, e instalado finalmente en la
península Byers para estudiar la evolución de la capa de nieve en el emplazamiento CALM
Limnopolar Lake. En este trabajo se presenta el prototipo y su configuración para permitir a
otros desarrollar sus propias cámaras para el seguimiento de la cubierta de nieve u otros fenó-
menos meteorológicos.
PALABRAS CLAVE: Suelos congelados, Nieve, Cámara digital automática, Instrumentación.

I. INTRODUCTION

The study of permafrost and active layer plays an important role on both
periglacial environments knowledge and climate evolution monitoring (e.g.,
HINKEL, 1997; HARRIS et al., 2001; TURNER et al., 2007; RAMOS et al., 2008,
2009; VIEIRA et al., 2010; DE PABLO et al., 2013, 2014a; BOCKHEIM et al.,
2013). In fact, the monitoring of permafrost and active layer is one of the com-
mon research topics on different environments, including high mountain, po-
lar and subpolar (e.g., BROWN et al., 2000; MATSUOKA and HUMLUM, 2003;
NELSON et al., 2004; BOCKHEIM, 2006; MATSUOKA, 2006; NELSON and
SHILOMANOV, 2009; VIEIRA et al., 2010). Research networks, like Ground
Temperature Network –Permafrost (GTN-P), developed different monitoring
protocols to allow the ground thermal monitoring and active layer thickness
measurement such as the Thermal State of Permafrost (TSP) and Circumpolar
Active Layer Monitoring (CALM), respectively (e.g., BROWN et al., 2000;
MATSUOKA and HUMLUM, 2003; NELSON et al., 2004; MATSUOKA, 2006).
Monitoring ground temperatures allow both to observe yearly evolution of the
temperatures and long-standing trends. The second case requires decadal of
continuous monitoring but it is the most interesting in the context of climate
warming. However, the first case allows continuous data analysis to observe
and establish short-time thermal behaviors, although to really understand the
thermal evolution of the ground requires to monitor other parameters what
could influence on the ground temperature. Then, air and surface temperatures

A prototype of an open hardware-based automatic photographic camera to…

Polígonos. Revista de Geografía, 28 (2016); 161-181

163

and snow cover, are the most common additional variables required to moni-
tor, such as proposed at the TSP protocol. On the other hand, more complete
monitoring stations include also radiation flux, precipitation, wind speed and
other meteorological variables. In general, the use of digital cameras to mon-
itor weather events are not common in these TSP monitoring stations. High
costs and relatively low resolution do not compensate, in general, the qualita-
tive information provided by the pictures. Only when to determine timely me-
teorological events is required to understand the thermal events or general
thermal behavior observed in the data, or when the data from a monitoring
station require to be spatially extended, a digital automatic camera is required.
Because the TSP stations usually do not monitor snow cover deep, but air
temperature at different height in a mast from which data could be derived
snow cover deep by different procedures (e.g., DANBY and HIK, 2007;
LEWKOWICZ, 2008). Then, the use of cameras also provides a way to check
the derived snow deep, that it is really relevant when trying to understand the
ground thermal behavior. In fact, the snow cover plays an important role on
the ground thermal evolution due to its isolation effect (e.g., GOODRICH, 1982,
ZHANG et al., 2003; ZHANG, 2005) or its contribution to runoff and ground-
water during the snow melting season (e.g., DEWALLE and RANGO, 2008).
However, the snow cover deep and duration changes areally, and the snow
cover deep derived at a TSP station does only provide punctual information.
Then, when trying to understand the local variability of the ground thermal
behavior between different nearest TSP stations, or of the active layer thick-
ness in a CALM site, the analysis of the snow onset, offset, duration and thick-
ness is required not punctually, but areally. To solve this, multiple snow deep
monitoring devices are required, or one of them together with an automatic
digital camera could be used in homogeneous terrains to provide a good ap-
proach to these parameters of the snow cover.

However, both, the installation of multiple snow deep monitoring devices
and commercial digital cameras result on expensive monitoring stations what
which goes against the philosophy of the TSP stations of simplicity and low
costs in order to allow the research teams to extend the network to have more
monitoring sites at many as possible periglacial environments. To avoid this
problem, we develop a robust low-cost and low maintenance device on the use
of open-hardware electronics (Arduino, http://arduino.cc/), and a miniature
digital camera sensor. This device, that we named PERMARDUINO-
CAMERA, could be included or be an independent element of a
PERMARDUINO station, a low-cost, open hardware based station to monitor
ground, surface and air temperatures and snow cover deep (de Pablo et al.,
2014b, 2015). PERMARDUINO-CAMERA reduces a 90% the costs of a

http://arduino.cc/

M.A. de Pablo, C. de Pablo S., M. Ramos, M. Prieto

Polígonos. Revista de Geografía, 28 (2016); 161-181

164

standard commercial outdoor scientific camera with the same resolution, con-
tributing to allow to extend the use of digital phenomenological cameras in-
side the different monitoring research stations (mainly TSP and CALM).

Here we present the first prototype we developed, showing and explaining
its characteristics: camera resolution, memory capacity, and maintenance
tasks under cold and harsh weather conditions. We show the electronic circuit
of the prototype in order to allow other colleagues to produce their own de-
vices as well as to modify by their own our design in order to fit their needs.
The necessary firmware is also showed and explained to make possible to oth-
ers to easily introduce modifications. Finally, after to show the results of the
first test of few days of activity in a monitoring site in Byers Peninsula, Liv-
ingston Island, Antarctica, in January 2015, we explain the future possible
modification could be applied to the device to improve it characteristics.

II. PERMARDUINO CAMERA

II.1. General design

PERMARDUINO-CAMERA device (FIGURE 1) is a prototype of a phe-
nomenological camera complimentary to both the monitoring devices of a
TSP station and a CALM site (e.g., BROWN et al., 2000; MATSUOKA and
HUMLUM, 2003; NELSON et al., 2004; MATSUOKA, 2006). This device results
from our efforts on the PERMARDUINO project to develop low-costs, low
maintenance and open hardware-based ground thermal monitoring stations
(DE PABLO et al., 2014b, 2015), based on our experience on the maintenance
of this type of monitoring stations in South Shetland Island, Antarctica. The
design of the PERMARDUINO-CAMERA tried to provide the next charac-
teristics to the device: (1) low cost, (2) simple design, (3) easy construction,
(4) easy use, (5) easy installation, (6) simple maintenance, (7) easily configu-
rable, (8) robust to weather conditions, and (9) small in size and light in
weight). Those characteristics are shared with the PERMARDUINO thermal
monitoring station (DE PABLO et al., 2014b).

The PERMARDUINO-CAMERA device includes a CMOS sensor in order
to take pictures automatically that are stored into a SD card, and it is powered
by a small battery that is charged with a solar panel. The camera is controlled
by a microcontroller and use a real time clock and a battery and its charger.
The complete device, except the solar cell, is housed in a 160x110x70 mm
waterproof semi-rigid plastic case that has been adapted to be installed in a
(wood) mast. A hole has been open in the front of the case and protected with
double glass (this one used to protect digital cameras LCD screens) to allow
the camera to take the pictures without expose it to the rush environmental

A prototype of an open hardware-based automatic photographic camera to…

Polígonos. Revista de Geografía, 28 (2016); 161-181

165

conditions. Except the solar cell and its connection cable, no external elements
are required.

Figure 1. Picture of the PERMARDUINO-CAMERA mounted in a 2 m high mast
installed in Byers Peninsula, Antarctica, and detail of the house opened for config-
uration and SD memory card replacement.

SOURCE: The authors

II.2. Core, power and electronics

PERMARDUINO-CAMERA device (FIGURE 2) is based on Arduino: an
open-hardware board that uses a microcontroller to control both digital and
analogical inputs and outputs (http://arduino.cc/), easily coded in C language,
and extended by adding stackable shields or any kind of electronic devices.
PERMARDUINO-CAMERA use an Arduino Uno board, equipped with and
ATMega328P microcontroller (from ATMEL) with 32 Kb of flash memory,
14 digital inputs/outputs, 6 analog inputs, and provide I2C, UART and ICSP
communications. The board is also equipped with a 16 MHz crystal oscillator,
a USB connection, a power jack, and an ICSP header
(https://www.arduino.cc/en/Main/ArduinoBoardUno). It operated at 5V and
could be powered by an external supply of 6 to 20V. Serial communications
over USB are able thanks to a FTDI chip on the board, what made possible
virtual com port to software on the computer to program it by the use of Ar-
duino Integrated Development Environment (IDE) freeware

http://arduino.cc/
https://www.arduino.cc/en/Main/ArduinoBoardUno

M.A. de Pablo, C. de Pablo S., M. Ramos, M. Prieto

Polígonos. Revista de Geografía, 28 (2016); 161-181

166

(https://www.arduino.cc/en/Main/Software), such as we will see below. Ar-
duino Uno board, is about 50 mm wide and 63 mm long, and it contains 2
arrays of female pins that provide direct connection to the inputs/outputs of
the microcontroller.

We used these characteristics to connect a commercial shield to charge a
Lithium polymer-based battery: Energy shield (FIGURE 2) by Seed Studio
(http://www.seedstudio.com). This shield allows to charge Li-po batteries by
the use of solar cells. This shield contains its own arrays of female pins to
allow to stack other shield or direct access to inputs/outputs in the Arduino
board. PERMARDUINO-CAMERA is powered by a 3.7V and 6,000 mAh Li-
po battery combine with a 3W solar cell (5V and 660mA), 180x140x20mm in
size.

Figure 2. (Left) Elements of the PERMARDUINO-CAMERA device: (1) Arduino
Uno board, (2) Energy shield, to charge a (3) 3.7V lithium-polymer battery by a
3W solar panel, (4) camera shield that includes a (5) SD memory card holder, and
(6) the NTCS jpeg serial camera. (Right) These elements already stacked and ad-
justed into a waterproof electronics housing box, including vibrations and thermal
isolator.

SOURCE: The authors

The used camera is a JPEG camera with a CMOS ¼ inch sensor that pro-

vides a configurable resolution, with a maximum resolution of VGA 480x640

https://www.arduino.cc/en/Main/Software

A prototype of an open hardware-based automatic photographic camera to…

Polígonos. Revista de Geografía, 28 (2016); 161-181

167

pixels (0.7 Mpixels), with progressive scan mode, automatic white balance
and exposure adjustment, and 60º of vision angle. The sensor does not have
IR filter, so, it captures data in the visible plus near IR. This camera is mounted
in a 32x32 mm module, and it provides NTCS video capacities, that allow to
adjust focus in real time by connecting to a device with AV-in ports or to a
computer by means of any standard video-to-USB connector. This camera
communicates with Arduino board by a configurable 38400 to 115200 baud
by TTL serial port.

To acquire the pictures at regular times, a board with a DS1337 Real Time
Clock (RTC) chip to remain accurate timing and a 3V backup coin cell battery,
was required. This RTC allow to program alarms that advise the Arduino
board to activate, take the picture, save it and deactivate again. Pictures, in
JPEG format, are stored into a 2 Gb SD memory card (FAT 16 format) slot at
a SD card module connected to the Arduino board by ISCP communications
protocol. The pictures files names are controlled by firmware and they are
named with an 8 characters long code based on the acquirement date including
year(Y), month (M), date (D) and hour (H) (YYMMDDHH.jpeg; e.g.,
15011513.jpeg is the picture acquired in January 15, 2015 at 13:00h). In this
way, images could be easily later organized by filename in a computer. The
memory card we use have enough capacity to store about 40,000 pictures (it
is about 1,600 days of monitoring with hourly acquirement of pictures of 50
Kb in size), although it additionally stores an ASCII file, excel-compatible
ASCII file, CSV formatted, with device control data, such as date, time, inner
temperature, device temperature, picture name, detected error, etc.

The, a 2Gb SD ensure about 4 year of continuous monitoring at full resolu-
tion and device capacities. In fact, device temperature, a DS18B20 digital tem-
perature sensor has been used, what only required a pull-up 4.7 kohms resistor.
For maintenance reasons during working operations, our device includes a 3
mm in diameter red led what is switched by another digital pin of the Arduino
board controlled by firmware to show the user when the device is measuring.
This led is connected to a micro-switch what could be turned off by the user
to save battery during the stand alone period of work of the device, and turned
on during testing and maintenance operations. We will see latter that this led
is used by firmware to show error detection. A pushbutton was also added in
order to allow the user to check the device status (device activity and error on
execution time). An additional small pushbutton has been added to the shield
for reseat purposes (for example after an error detection, or SD card connec-
tion). Other small pushbuttons have been added to reset the device.

M.A. de Pablo, C. de Pablo S., M. Ramos, M. Prieto

Polígonos. Revista de Geografía, 28 (2016); 161-181

168

All the electronics components (TABLE 1) were soldered into a PCB board
by simple circuits (FIGURE 3). To constitute a shield stackable to the Arduino
and Energy shields. The size of this shield is the same than the Arduino board,
50x63mm, although it does not include the camera that is connected to this
board by a parallel cable due to space requirements inside the case. One all
the elements are stacked, the electronics part of the device is a module and
small, light, robust and compact block of 50x63x60 mm in size, allowing
enough space inside the case to hold the battery and the camera.

Figure 3. Components and circuit of the camera shield (element ‘4’ in Figure 2),
stackable to the Arduino Uno board (and compatible), what constitute the main
development of this project, together with the corresponding firmware.

SOURCE: The authors

Table 1. Electronics components required for the PERMARDUINO-CAMERA de-
vice

Component # Component
1 Arduino Uno board 2 Resistor 260Ω
1 Energy Shield 1 Resistor 1 KΩ
1 3.7V 6000 mAh Li-po battery 1 Resistor 4.7 KΩ
1 Protoboard (2.54 mm spaced) 3 Resistor 10 KΩ
1 SD card holder 1 Resistor 12 KΩ
1 2Gb SD card 1 Resistor 330 KΩ
1 NTCS jpeg serial camera 1 Diode Zener 5V
1 DS3231 RTC 1 Transistor 2N2222

A prototype of an open hardware-based automatic photographic camera to…

Polígonos. Revista de Geografía, 28 (2016); 161-181

169

1 DS18B20 temperature sensor 1 Led Red 3mm
1 2 pins connector (male & female) 1 Led Green 3mm
1 6 pins connector (male & female) 1 Micro-switch
1 2 pins connector (male & female) 1 Video connector
1 Array of male pins connector 1 Push button mini
1 Array of female pins connector (40) 1 Push button normal
SOURCE: The authors

II.3. Firmware

The PERMARDUINO-CAMERA device is controlled by a firmware writ-
ten in C language by the use of Arduino IDE version 1.6.5 (available for Win-
dows, Mac and Linux operative systems). The freeware Arduino IDE allows
the firmware compilation and its upload to the microcontroller in the Arduino
board by means of an USB standard cable. The firmware contents are limited
by the amount of free memory available in the microcontroller (30Kb), used
for both firmware and volatile memory during the program running. However,
this memory is enough to run a program to control the image acquirement and
its save into an SD card.

The firmware (APPENDIX 1) is divided into different sections 4 different
sections what run in sequence by the microcontroller: (1) device configura-
tion, that contains information required by the microcontroller to assigns tasks
to each digital/analogical pin as well as to read additional procedures: (a) li-
braries definition, (b) analogue pins definition, (c) digital pins definition, (d)
variables definition, (e) constants definition, (f) log and images files defini-
tion, and (g) libraries configuration; (2) Device initialization, that (i) power on
the camera and sensors, (j) check the RTC, (k) check the SD card, (l) check
the data file, (m) write the datafile header is required, (n) check camera and
its configuration, and (o) check the temperature sensor and configure; (3) main
device operation, that (s) read the present time, (p) check for error -if the
pushbutton was pressed, (q) take a picture and read the sensors –if the pushbut-
ton was not pressed and it is the measurement time, (r) save the data, (s)
changes to low-power consumption and (t) sleep during the waiting period or
the pushbutton is pressed; and (4) Procedures, that contains tasks required in
any moment during the device configuration (Section 2) or the main program
running (Section 3), like sensor reading, data saving, device checking, etc.
Section 1 and 2 run only one time after a startup or a reset (by pushing the
small pushbutton in the device shield); Section 3 runs into an infinite loop
until an error, a reset or a power down; and Section 4 runs only when called
from any of the other sections.

M.A. de Pablo, C. de Pablo S., M. Ramos, M. Prieto

Polígonos. Revista de Geografía, 28 (2016); 161-181

170

This firmware could be modified by each user in the Arduino IDE and up-
loaded as many times as required to the board to fit the user requirements. And
could be also modified to add other sensors, increase/reduce the measurements
frequency, change the datafile data stamp, etc. The content, design, and work-
flow of the firmware depend on the user requirements, the used sensors and
hardware stacked and connected to the Arduino board. Extensive information
about how to wire devices to Arduino, and how to write the corresponding
firmware could be found in the Arduino forum webpage as well as in many
books (e.g., MARGOLIS, 2011; BANZI, 2011; EVANS, 2011; TIMMIS, 2011;
MONKS, 2012; GLETZ and DI JUSTO, 2012; DI JUSTO and GERTZ, 2012;
BAYLE, 2013; BLUM, 2013). On the other hand, the use of different sensors
and electronics elements could require long codes, what are usually already
available such as libraries what reduce the lines of code required to be write
to the user to prepare the firmware.

III. FIRST TESTS AND PRELIMINARY RESULTS

Although a 6 months-long testing period was applied to the device in the
laboratory, in order to test the prototype under real cold, rough and harsh
weather conditions, the device was installed between December 25th 2014 and
January 3rt 2015, at the Spanish Antarctic Station «Gabriel de Castilla» in
Deception Island (South Shetland Archipelago), Antarctica (62°58′38″S,
60°40′33″W). During this period, we examined the device behavior and tried
to detect any problem in the electronics, firmware and housing. Due to the
excellent results in spite of the cold, windy and snowy conditions, in January
2015, finally we installed the first prototype of PERMARDUINO-CAMERA
device in its definitive emplacement in Byers Peninsula, Livingston Island,
Antarctica, in early 2015, during the Spanish Antarctic Campaign (FIGURE 4).

The device was installed in a low slope terrain at the shore of the Limnopolar
Lake (62°38′59.7″S, 61°06′09.5″W). This site was selected because from this
site there are a complete view of the Limnopolar Lake CALM site that we
monitor since 2009 (DE PABLO et al., 2010, 2013, 2014a), and where we ob-
served an increase on the snow cover that is affecting the thermal behavior of
the ground (DE PABLO et al., 2016, submitted). We already have a commercial
automatic digital camera, but, although it has the same resolution (480x640
pixels), it is further from the CALM site since it is shared with other project
that want to monitor the Limnopolar Lake water level and snow cover evolu-
tion (e.g., CAMACHO et al., 2014).

After its installation in its final emplacement in a 2 m height wood mast
ensured by 3 cord clamps, we focused it with the help of a laptop and a video
recorder software. We leaved the device working for few days meanwhile we

A prototype of an open hardware-based automatic photographic camera to…

Polígonos. Revista de Geografía, 28 (2016); 161-181

171

completed different tasks in the TSP and CALM site at the Limnopolar Lake
inside the view field of the camera. Few days later, and before to leave the site
and the instrumentation for one year, we checked how it was working. The
device recorder pictures as expected (FIGURE 4) without any problem in spite
of the cold and windy conditions. During the sunny days, no condensation was
registered in the pictures due to the glass that isolate the camera from the en-
vironment. However, since the camera was placed pointing to the west, some
of the images captured the Sun, saturating partially the images, but without
disturbing image of the rest of the scene, and the images are perfectly valid.
In any case, reflects or flares were not recorded in the images.

Figure 4. Examples at full resolution (480x640 pixels) and thumbnails of the im-
ages acquired by the camera in January 2015 once it was installed in Byers Pen-
insula, Antarctica, to take pictures (hourly) of the A25 CALM-S site.

SOURCE: The authors

In spite of the short daytime duration in polar latitudes, we decided to leave

the camera configured to take a picture each hour, also during the night, in
order to check the consume under real low luminosity conditions to charge the
batteries, as well as under the lower temperatures on nighttime, and memory
card space.

M.A. de Pablo, C. de Pablo S., M. Ramos, M. Prieto

Polígonos. Revista de Geografía, 28 (2016); 161-181

172

IV. CONCLUSIONS

The PERMARDUINO-CAMERA is part of the PERMARDUINO project
to develop an automatic device to monitor permafrost and active layer follow-
ing the TSP and CALM international protocols. This project is based on the
use of open hardware. A functional prototype of PERMARDUINO-
CAMERA device is presented here. It is an automatic digital photographic
camera to take pictures in cold and harsh weather conditions to replace expen-
sive commercial ones, or, at least, to allow the installation of multiple of those
by lower price t better monitor the snow cover and other meteorological phe-
nomena. In our case, we develop it to help us to monitor the snow cover evo-
lution and its spatial distribution in order to understand the spatial distribution
of active layer thickness in a CALM site in Byers Peninsula, Antarctica.

PERMARDUINO-CAMERA use a TTL serial JPEG VGA 480x640 pixel
in resolution camera provided by a CMOS ¼ inch sensor to acquired pictures
in the panchromatic and near IR band with an angle vision of 60º. This camera
is connected to our shield stackable to the Arduino Uno (and compatible)
board, and an Energy shield to changer by a solar cell a 3.7V li-po battery.
The shield contains all the electronics required to connect the camera to a
screen to see video on real time to focus the camera, as well as a SD memory
card holder where the images and auxiliary data are stored. The device is pro-
grammed, by the use of C language in Arduino IDE, to take pictures hourly,
although it could be easily configurable the users by the modification of the
firmware we provided here.

The design of PERMARDUINO-CAMERA device tried to provide the next
characteristics to the station: (1) low cost, (2) easy design, (3) easy construc-
tion, (4) high accuracy in data measurement, (5) easy use, (6) easy installation,
(7) simple maintenance, (8) easily configurable, (9) robust to weather condi-
tions, and (10) small in size and light in weight.

The simple design and the low knowledge requirements on electronics and
programming make this device a perfect solution for researches who want to
develop their own experiments and automatic digital cameras to monitor
weather phenomena (among other) on periglacial environments.

 ACKNOWLEDGEMENTS

Authors want to thank to the Arduino Team for the development of Arduino
open-hardware project, a way to open the technology to the society, and to the
Arduino user’s community for their help and collaborations to improve
PERMARDUINO-CAMERA code. We also want to than to the Spanish Polar
Committee, The Spanish Polar Research Program, and the whole crew of the

A prototype of an open hardware-based automatic photographic camera to…

Polígonos. Revista de Geografía, 28 (2016); 161-181

173

«Juan Carlos I» Spanish Antarctic Station for their help to develop the fieldtrip
in Byers Peninsula, Livingston Island, Antarctica. We also want to thank to
Cayetana Recio for her help during the camera installation in Antarctica.

This project was partially supported by PERMASNOW (CTM2014-52021-
R), ANTARPERMA (CTM2011-15565-E), PERMAPLANET (CTM2009-
10165E), PERMAMODEL (POL2006-01918), and PERMATHERMAL pro-
jects from the Ministry of Economy and Competitiveness, and the Ministry of
Education and Science, Government of Spain.

 REFERENCES

BANZI, M. (2011): Getting started with Arduino. O’Reilly Media, Inc.
BAYLE, J. (2013): C programming for Arduino. O’Reilly Media, Inc.
BLUM, J. (2013): Exploring Arduino: Tools and Techniques for Engineering Wiz-

ardry. O’Reilly Media, Inc. BROWN, J.; NELSON, F.E.; and HINKEL, K.M. (2000):
«The circumpolar active layer monitoring (CALM) program research designs and
initial results». Polar Geography, 3, 165–258.

BOCKHEIM, J.G. (2006): «Permafrost distribution in the southern circumpolar region
and its relation to the environment: a review and recommendations for further re-
search». Permafrost and Periglacial Processes, 6, 27-45.

BOCKHEIM, J.; VIEIRA, G.; RAMOS, M.; LÓPEZ-MARTÍNEZ, J.; SERRANO, E.;
GUGLIELMIN, M.; WILHELM, K.; and NIEUWENDAM, A. (2013): «Climate warming
and permafrost dynamics in the Antarctic Peninsula region». Global and Plane-
tary Change, 100, 215–223. doi: 10.1016/j.gloplacha.2012.10.018.

CAMACHO, A.; VILLAESCUSA, J.A.; ROCHERA, C.; and JØRGENSEN, S.E. (2014):
«Modeling the response of the planktonic microbial community to warming ef-
fects in maritime antarctic lakes: Ecological implications». Developments in En-
vironmental Modelling, 26(9). 231-250.

DANBY, R. and HIK, D. (2007): «Responses of white spruce (Picea glauca) to experi-
mental warming at subsurface alpine treeline». Global Change Biology, 13, 437–
451.

DE PABLO, M.A.; DE PABLO, C.; and RAMOS, M. (2014b): «A prototype of an open
hardware-based device for active layer and frozen ground monitoring:
PERMARDUINO». 4th European Conference on Permafrost. Évora (Portugal).
Abstracts, 444.

DE PABLO, M.A.; DE PABLO, C.; and RAMOS, M. (2015): «Improvements on
PERMARDUINO prototype device for active layer and permafrost thermal mon-
itoring, and automatic digital camera development». VI Congreso Ibérico de la
International Permafrost Association. Valladolid, Spain. Abstracts, 23.

DE PABLO, M.A.; RAMOS, M.; VIEIRA, G.; and QUESADA, A. (2010): «A new CALM-
S site on Byers Peninsula, Livingston Island, Antarctica». In: Ambientes Perigla-
ciares, Permafrost y Variabilidad Climática: II Congreso Ibérico de la Internatio-
nal Permafrost Association, edited by: BLANCO, J.J.; DE PABLO, M.A.; and
RAMOS, M.; Servicio de Publicaciones de la Universidad de Alcalá, Alcalá de He-
nares, 153–159.

M.A. de Pablo, C. de Pablo S., M. Ramos, M. Prieto

Polígonos. Revista de Geografía, 28 (2016); 161-181

174

DE PABLO, M. A.; BLANCO, J. J.; MOLINA, A.; RAMOS, M.; QUESADA, A.; and VIEIRA,
G. (2013): «Interannual active layer variability at the Limnopolar Lake CALM site
on Byers Peninsula, Livingston Island, Antarctica». Antarctic Science, 25, 167–
180. doi: 10.1017/S0954102012000818.

DE PABLO, M.A.; RAMOS, M. and MOLINA, A. (2014a): «Thermal characterization of
the active layer at the Limnopolar Lake CALM-S site on Byers Peninsula (Living-
ston Island), Antarctica». Solid Earth, 5. 721-739.

DE PABLO, M.A.; RAMOS, M. and MOLINA, A. (2016): «Snow cover evolution at the
Limnopolar Lake CALM-S site on Byers Peninsula, Livingston Island, Antarctica,
2009-2014». Catena. In press

DEWALLE, D. and RANGO, A. (2008): Principles of Snow Hydrology. New York:
Cambridge University Press. 428 pp. ISBN 978-0-521-82362-3.

DI JUSTO, P. and GERTZ, E. (2012): Atmospheric monitoring with Arduino. O’Reilly
Media, Inc.

EVANS, B. (2011): Beginning Arduino programming. Apress Inc.
GERTZ, E. and di Justo, P. (2012): Environmental monitoring with Arduino. O’Reilly

Media, Inc.
GOODRICH, L.E. (1982): «The influence of snow cover on the ground thermal re-

gime». Canada Geotechnical Journal, 19, 421 – 432.
HARRIS, C.; HAEBERLI, W.; VONDER MÜHLL, D.; and KING, L. (2001): «Permafrost

monitoring in the high mountains of Europe: the PACE project in the global con-
text». Permafrost and Periglacial Processes, 12(1), 3–11.

HINKEL, K.M. (1997): «Estimating seasonal values of thermal diffusivity in thawed
and frozen soils using temperature time series». Cold Regions Science and Tech-
nology, 26, 1–15.

LEWKOWICZ, A. G. (2008): «Evaluation of miniature temperature-loggers to monitor
snowpack evolution at mountain permafrost sites, northwestern Canada». Perma-
frost and Periglacial Processes, 19, 323–331. doi: 10.1002/ppp.625

MARGOLIS, M. (2011): Arduino cookbook (2nd Edition). O’Reilly Media, Inc.
MATSUOKA, N. (2006): «Monitoring periglacial processes: towards construction of a

global network». Geomorphology, 80, 20–31.
MATSUOKA, N. and HUMLUM, O. (2003): «Monitoring periglacial processes: new

methodology and technology». Permafrost and Periglacial Processes, 14, 299–
303.

Monks, S. (2012): Programming Arduino: Getting started with sketches. McGraw-
Hill.

NELSON, F.E.; SHIKLOMANOV, N.I.; HINKEL, K. and CHRISTIANSEN, H. (2004): «In-
troduction: the Circumpolar Active Layer Monitoring Network (CALM) work-
shop and CALM II program». Polar Geography, 28, 253–266.

NELSON, F.E. and SHIKLOMANOV, N.I. (2009): «The Circumpolar Active Layer Mon-
itoring Network–CALM III (2009–2014): long-term observations on the ‘‘Cli-
mate-Active Layer-Permafrost System’’». En BLANCO, J.J.; DE PABLO, M.A. and
RAMOS, M. (eds.) Ambientes periglaciares, permafrost y variabilidad Climática:
II Congreso Ibérico de la International Permafrost Association. Alcalá de Hena-
res: Servicio de Publicaciones de la Universidad de Alcalá, 9–14.

A prototype of an open hardware-based automatic photographic camera to…

Polígonos. Revista de Geografía, 28 (2016); 161-181

175

RAMOS, M.; HASLER, A.; VIEIRA, G.; GRUBER, S. and HAUCK, C. (2009): «Setting up
boreholes for permafrost thermal monitoring on Livingston Island in the Maritime
Antarctic». Permafrost and Periglacial Processes, 20, 57–64.

RAMOS, M.; VIEIRA, G.; BLANCO, J.J.; GRUBER, S.; HAUCK, C.; HIDALGO, M.A. and
TOME, D. (2008): «Thermal active layer monitoring in two different sites on Liv-
ingston Island during the last seven years: a comparative study». In Proceedings
of the Ninth International Conference on Permafrost, Fairbanks, Alaska. Fair-
banks, AK: University of Alaska, Institute of Northern Engineering, 1463–1467.

TIMMIS, H. (2011): Practical Arduino engineering. Apres Inc.
TURNER, J.; LACHLAN-COPE, T.A.; COLWELL, S.; MARSHALL, G.J. and CONNERLLEY,

W.M. (2007): «Significant warming of the Antarctic winter troposphere». Science,
131, 1914–1917.

VIEIRA, G.; BOCKHEIM, J.; GUGLIELMIN, M.; BALKS, M.; ABRAMOV, A.;
BOELHOUWERS, J.; CANNONE, N.; GANZERT, L.; GILICHINSKY, D.A.;
GOTYACHKIN, S.; LÓPEZ-MARTÍNEZ, J.; MEIEKLEJOHN, I.; RAFFI, R.; RAMOS, M.;
SCHAEFER, C.; SERRANO, E.; SIMAS, F.; SLETTEN, R. and WAGNER, D. (2010):
«Thermal state of permafrost and active-layer monitoring in the Antarctic: ad-
vances during the International Polar Year 2007–2009». Permafrost and Perigla-
cial Processes, 21, 182–197.

ZHANG, T. (2005): «Influence of the seasonal snow cover on the ground thermal re-
gime: An overview». Rev. Geophys.; 43. RG4002. doi:10.1029/2004RG000157

ZHANG, T.; BARRY, R.G.; KNOWLES, K.; LING, F.; and ARMSTRONG, R.L. (2003):
«Distribution of seasonally and perennially frozen ground in the Northern Hemi-
sphere». In: Proceedings of the 8th International Conference on Permafrost, 21-
25 July 2003, Zurich, Switzerland [Phillips, M.; S.M. Springman, and L.U. Aren-
son (eds.)]. A.A. Balkema, Lisse, the Netherlands, pp. 1289–1294.

APPENDIX 1: COMMENTED PERMARDUINO-CAMERA (VER-
SION 1.0) FIRMWARE, READY TO COPY AND PASTE ON
ARDUINO IDE.
/*

 PERMARDUINO CAMERA 1.0
 M.A. de Pablo & C. de Pablo, 2015

 Arduino-based phenonenological camera

 Version 1.0 2015-01-10 v20150110

 */

 // DEVICE CONFIGURATION
// Libraries definition
#include <Wire.h> // Library for I2C communications protocol
#include <DS3231.h> // Library for DS3131 RTC manage-ment
#include <Adafruit_VC0706.h> // Library for TTL serial JPEG camera
#include <SoftwareSerial.h> // Library for serial communications
#include <OneWire.h> // Library for 1-Wire communications protocol
#include <DallasTemperature.h> // Library for DS18B20 tempera-ture sensor
#include <SD.h> // Library for SD card management
#include <avr/sleep.h> // Library for sleep and power save

M.A. de Pablo, C. de Pablo S., M. Ramos, M. Prieto

Polígonos. Revista de Geografía, 28 (2016); 161-181

176

// Analogue pins definition
const byte BatteryPin = 0; // Battery voltage - Analog pin 0
const byte SolarCellPin = 3; // Solar cell voltage - Analog pin 1

// Digital pins definition
//const byte RTCAlarmPin = 2; // Not required to be declared
//const byte TestButtonPin = 3; // Not required to be declared
const byte TestLedPin = 4; // Device working led pin –Digital pin 3
const byte PowerPin = 5; // Activation pin to power the camera – Digital pin 4
const byte TempPin = 7; // Inner temperature sensor - Digital pin 4
const byte chipSelect = 10; // SD card configuration pin – Digital pin 10

// Variables definition
int Year; // Year information
byte Month; // Month information
byte Date; // Day information
byte Hour; // Hour information
byte Minute; // Minute information
byte Second; // Second information
boolean WorkNow = true; // Cancel sleep cycle
unsigned int n = 0; // Measurements counter
volatile byte e = 0; // Error type
unsigned int batt; // Battery voltage
unsigned int solar; // Solar cell voltage
float temp; // Device temperature data
long picfilesize; // Pictures filename size
uint8_t imgsize; // Pictures file size
int32_t time; // Pictures acquisition time

// Constant definition
// No constants

// Log files configuration
File datafile; // File to store the acquired data
char filename1[] = "DataCam.csv"; // Name of the file to store the data
File imgFile; // File to store the acquired picture
char filename2[13] = "YYMMDDHH.jpg"; // Name of the file to store the picture
char symbols[] = ";:/ "; // Constant symbols used during data record

// Libraries configuration
DS3231 RTC; // Configure library to read the Real Time Clock
SoftwareSerial cameraconnection = SoftwareSerial(8, 9); // Configure camera communica-tions
Adafruit_VC0706 cam = Adafruit_VC0706(&cameraconnection); // Initialize the camera
OneWire oneWire(TempPin); // Configure library to read device temperature sensors
DallasTemperature TempBus(&oneWire); // Initialize the temperature sensor bus
DeviceAddress tempsensoraddress; // Define the temperature sensor address

// DEVICE INITIALIZATION
void setup() {
 pinMode(PowerPin, OUTPUT); // Configure the power pin
 pinMode(TestLedPin, OUTPUT); // Configure the working led
 pinMode(chipSelect, OUTPUT); // Configure SD card

 digitalWrite(TestLedPin, HIGH); // Activate the led

 Wire.begin(); // Initialize I2C communications
 RTC.begin(); // Initialize the RTC
 if (! RTC.begin()){ // Check if RTC is running
 e = 1; // Error #01: RTC is not running
 error(); // Blink the led and freeze the device
 return;
 }
 ReadTime(); // Read the present time from RTC
 if (Year < 2014) { // Check if RTC is about up to date
 e = 2; // Error #02: RTC is out of date

A prototype of an open hardware-based automatic photographic camera to…

Polígonos. Revista de Geografía, 28 (2016); 161-181

177

 error(); // Blink the led and freeze the device
 return;
 }
 if (! SD.begin(chipSelect)) { // Check if the card is present and can be initialized:
 e = 3; // Error #03: Unable to set SD card
 error(); // Blink the led and freeze the device
 return;
 }
 if (! SD.exists(filename1)) { // Check and/or create the logdata file on SD Card
 datafile = SD.open(filename1, FILE_WRITE); // Create the datafile if it doesn't exist
 datafile.close();
 if (! SD.exists(filename1)) { // Check if datafile was created
 e = 4; // Error #04: Unable to create a file on SD card
 error(); // Blink the led and freeze the device
 return;
 }
 datafile = SD.open(filename1, FILE_WRITE); // Open the datafile
 if (datafile){ // Check if datafile could be open
 datafile.println(F("Permarduino_camera")); // Save a file header (I)
 datafile.println(F("d_t;Num;Vcc;Bat1;Bat2;Sol1;Sol2;DeT;Pic;P_s;P_d")); // Save a file header (II)
 delay(30); // Give enough time to complete the file writing
 datafile.close(); // Close the datafile
 }
 else {
 e = 5; // Error #05: Unable to write on data file
 error(); // Blink the led and freeze the device
 return;
 }
 }

 // Sensors initilization, configuration and test
 digitalWrite(PowerPin, HIGH); // Turn on power for sensors
 delay(5000); // Delay to ensure the signal stabilization from sensors
 if (cam.begin()){} // Initialize the camera
 else {
 e = 6; // Error #06: Unable to initialize the camera
 error(); // Blink the led and freeze the device
 return;
 }
 cam.setImageSize(VC0706_640x480); // Set camera resolution to 640x480 pixels
 imgsize = cam.getImageSize(); // Take the camera image resolution
 if (imgsize == VC0706_640x480){ // Check if the resolution is correct
 Serial.println("640x480");
 }
 else {
 e = 7; // Error #07: Unable to set camera pictures resolution
 error(); // Blink the led and freeze the device
 return;
 }
 delay(3000); // Delay to ensure the signal stabilization from sensors
 if (! cam.takePicture()){ // Try to take a picture
 e = 8; // Error #08: Unable to take a picture
 error(); // Blink the led and freeze the device
 return;
 }
 TempBus.begin(); // Initialize the Temperature sensor on OneWire bus
 delay(100); // Delay to ensure the signal stabilization from sensors
 uint8_t tempsensoraddress[8] = {}; // Configure temperetature sensor address
 TempBus.getAddress(tempsensoraddress, 0); // Read the temperature sensor address
 TempBus.setResolution(tempsensoraddress, 12); // Set DS18B20 sensor precision to 12 bits

 digitalWrite(PowerPin, LOW); // Turn off the power for sensors
 digitalWrite(TestLedPin, LOW); // Turn off test led
 delay(500);
 CheckDevice(); // Check other not fundamental error
 RTC.enableInterrupts(EveryHour); // Set the working alarm for the device (hourly)

M.A. de Pablo, C. de Pablo S., M. Ramos, M. Prieto

Polígonos. Revista de Geografía, 28 (2016); 161-181

178

}

// DEVICE OPERATION
void loop() {
 ReadTime(); // Read the present time
 if (WorkNow == false){ // Shows device status if test button was pressed
 CheckDevice(); // Show device status and higher error code
 delay(100);
 }
 if (WorkNow == true){ // Check if it is time to measure
 RecordData(); // Read the sensors, take a picture and save the data
 delay(100);
 WorkNow = false; // Made the device be ready for the next measurement
 }

 attachInterrupt(0, WakeUp, FALLING); // Activate again the interrupt from the RTC alarm
 attachInterrupt(1, CheckNow, CHANGE); // Activate again the interrupt from the test button
 RTC.clearINTStatus(); // Ensure RTC is working

 delay(300);
 sleepNow(); // Send the arduino to sleep
}

// PROCEDURES
// Sensors reading
void RecordData(){
 digitalWrite(PowerPin, HIGH); // Turn on the sensor's power
 delay(1000); // Give time to sensors to stabilize their reading
 n = n + 1; // Update measurement counter
 SD.begin(chipSelect); // Configure SD card
 datafile = SD.open(filename1, FILE_WRITE); // Open the file to store the data
 if (datafile){ // Try to open the datafile
 printDigits(Date); // Save present day
 datafile.print(symbols[2]);
 printDigits(Month); // Save present month
 datafile.print(symbols[2]);
 datafile.print(Year); // Save present year
 if (Year < 2015) { // Check if RTC is up to date
 e = 2; // Error #02: RTC is out of date
 }
 datafile.print(symbols[3]);
 printDigits(Hour); // Save present hour
 datafile.print(symbols[1]);
 printDigits(Minute); // Save present minute
 datafile.print(symbols[1]);
 printDigits(Second); // Save present second
 datafile.print(symbols[0]);
 datafile.print(n); // Save measurement number (counter)
 datafile.print(symbols[0]);
 datafile.print(readVcc()); // Read and save microcontroler volt-age
 datafile.print(symbols[0]);
 datafile.print(readTemp()); // Read and save microcontroler inner temperature
 datafile.print(symbols[0]);
 delay(10);
 batt = analogRead(BatteryPin); // Read the battery voltage
 datafile.print(batt); // Save battery voltage (raw)
 datafile.print(symbols[0]);
 datafile.print(2 * (readVcc() * batt) / 1023); // Save the battery voltage (in volts)
 datafile.print(symbols[0]);
 delay(10);
 solar = analogRead(SolarCellPin); // Read the solar cell voltage
 datafile.print(solar); // Save solar cell voltage (raw)
 datafile.print(symbols[0]);
 datafile.print(0.00666 * solar); // Save solar cell voltage (in volts)
 datafile.print(symbols[0]);

A prototype of an open hardware-based automatic photographic camera to…

Polígonos. Revista de Geografía, 28 (2016); 161-181

179

 delay(10);
 TempBus.requestTemperatures(); // Activate temperature sensor bus
 temp = TempBus.getTempCByIndex(0); // Request device temperature
 datafile.print(temp); // Save device temperature data
 datafile.print(symbols[0]);
 if ((temp == -127)||(temp == 85)){ // Check for errors on the temperature sensor
 e = 9; // Error #09: problems reading sensor
 }
 delay(10);

 TakeImage(); // Take a picture with the camera
 delay(10);
 datafile.print(filename2); // Save picture file name
 datafile.print(symbols[0]);
 datafile.print(picfilesize); // Save picture file size
 datafile.print(symbols[0]);
 datafile.print(time); // Save picture acquirement time
 datafile.println();
 delay(100); // Give enough time to save all the data
 datafile.close(); // Close data file
 }
 digitalWrite(PowerPin, LOW); // Turn off the sensor's power
}

//Inner voltmeter
long readVcc() {
 long result;
 ADMUX = _BV(REFS0) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1) // Read 1.1V reference against AVcc
 delay(2); // Wait for Vref to settle
 ADCSRA |= _BV(ADSC); // Convert
 while (bit_is_set(ADCSRA,ADSC));
 result = ADCL;
 result |= ADCH<<8;
 result = 1126400L / result; // Back-calculate AVcc in mV
 return result;
}

//Inner temperature
long readTemp() {
 long result;
 ADMUX = _BV(REFS1) | _BV(REFS0) | _BV(MUX3); // Read temperature sensor against 1.1V reference
 delay(2); // Wait for Vref to settle
 ADCSRA |= _BV(ADSC); // Convert
 while (bit_is_set(ADCSRA,ADSC));
 result = ADCL;
 result |= ADCH<<8;
 result = (result - 125) * 1075; // Back-calculate temp in ºCx1000
 return result;
}

// Take a picture
void TakeImage(){
 filename2[0] = (Year/10)%10 + '0'; // Extract year number to image filename
 filename2[1] = Year%10 + '0'; // Extract year number to image filename
 filename2[2] = Month/10 + '0'; // Extract month number to image filename
 filename2[3] = Month%10 + '0'; // Extract month number to image filename
 filename2[4] = Date/10 + '0'; // Extract day number to image filename
 filename2[5] = Date%10 + '0'; // Extract day number to image filename
 filename2[6] = Hour/10 + '0'; // Extract hour number to image filename
 filename2[7] = Hour%10 + '0'; // Extract hour number to image filename

 cam.takePicture(); // Take a picture

 imgFile = SD.open(filename2, FILE_WRITE); // Open the file to save the pic-ture in
 uint16_t jpglen = cam.frameLength(); // Get the size of the image (frame) taken
 picfilesize = jpglen; // Assign the image file size

M.A. de Pablo, C. de Pablo S., M. Ramos, M. Prieto

Polígonos. Revista de Geografía, 28 (2016); 161-181

180

 time = millis(); // Initialize a timecounter
 byte wCount = 0; // For counting # of writes
 while (jpglen > 0) { // Check if there is image data to be saved
 uint8_t *buffer; // Read 32 bytes at a time;
 uint8_t bytesToRead = min(32, jpglen); // Readd image bytes
 buffer = cam.readPicture(bytesToRead); // Buffer image data
 imgFile.write(buffer, bytesToRead); // Transfer data to the imagefile
 jpglen -= bytesToRead; // Calculate remaining image bytes
 }
 imgFile.close(); // Close the image file
 time = millis() - time; // Stop the time counter
}

// Alarm stops the sleep process
void WakeUp(){
 noInterrupts(); // Disable interrupts to not disrupt the sensor readings
 WorkNow = true; // The device is ready to take new sensors readings
}

// User push test button
void CheckNow(){
 noInterrupts(); // Disable interrupts to not disrupt the de-vice checking
 WorkNow = false; // The device could be checked now
}

// Read present time and date
void ReadTime(){
 DateTime now = RTC.now(); // Read date and time from the RTC
 Year = now.year(), DEC; // Read year information from the RTC
 Month = now.month(), DEC; // Read month information from the RTC
 Date = now.date(), DEC; // Read day information from the RTC
 Hour = now.hour(), DEC; // Read hour information from the RTC
 Minute = now.minute(), DEC; // Read minute information from the RTC
 Second = now.second(), DEC; // Read second information from the RTC
}

// Set the arduino to sleep mode
void sleepNow(){
 set_sleep_mode(SLEEP_MODE_PWR_DOWN); // Configuration of the sleep mode
 sleep_enable(); // Enables the sleep bit in the microcontroler register
 sleep_mode(); // Put the microcontroller in sleep mode
 // DEVICE IS SLEEPING HERE
 sleep_disable(); // Disable sleep when the device is getting up
}

// Blink a led
void blinkLed(byte Pin, int numBlinks, int blinkRate) {
 for (int i=0; i < numBlinks; i++) {
 digitalWrite(Pin, HIGH);
 delay(blinkRate);
 digitalWrite(Pin, LOW);
 delay(blinkRate);
 }
}

// Shows the device status by a blinking led
void CheckDevice(){
 blinkLed(TestLedPin, 3, 500);
 delay(100);
 blinkLed(TestLedPin, e, 200);
}

// Error control
void error() {
 while(1){

A prototype of an open hardware-based automatic photographic camera to…

Polígonos. Revista de Geografía, 28 (2016); 161-181

181

 blinkLed(TestLedPin, e, 200);
 delay(1000);
 } }

// Utility function to print numbers leading 0
void printDigits(int digits){
 if(digits < 10){
 datafile.print('0');
 }
 datafile.print(digits);
}
