La biotecnología en la salud humana: el hito de los anticuerpos monoclonales

Autores/as

  • José L. Mauriz
  • Raquel Ordoñez
  • Néstor Prieto-Domínguez
  • Javier González Gallego

DOI:

https://doi.org/10.18002/ambioc.v0i12.4944

Palabras clave:

Biología, Ecología. Medio ambiente, Medicina. Salud, Biotecnología roja, Cáncer, Inmunidad, Anticuerpos monoclonales, Inmunización,

Resumen

La biotecnología está constituyéndose como una disciplina transversal con interés en diversas áreas como la salud humana y animal, el medioambiente, la agroalimentación, la industria o incluso los recursos marinos. La denominada biotecnología roja es la que se centra en el cuidado de la salud, e intenta mejorar los procedimientos terapéuticos y diagnósticos, implicando para ello al sector farmacéutico, a la investigación biomédica y al conjunto de las tecnologías médicas. En la biotecnología roja el camino ha sido largo, con gran número de fracasos pero también con muchos éxitos; en este artículo de divulgación nos centraremos brevemente en la historia de la biotecnología roja y profundizaremos en uno de sus mayores éxitos: la producción y modificación de anticuerpos monoclonales murinos, quiméricos, humanizados y humanos, con interés en el tratamiento de enfermedades humanas, y se analizarán sus posibles efectos secundarios.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Adams, J.J. y Sidhu, S.S. (2014). Synthetic antibody technologies. Current Opinion in Structural Biology. 24:1-9.

Aksoy, S. et al., (2007). Rituximab-related viral infections in lymphoma patients. Leukemia & Lymphoma. 48:1307-1312.

Alghasham, A. y Rasheed, Z. (2014). Therapeutic targets for rheumatoid arthritis: Progress and promises.Autoimmunity . 47:77-94.

Banerjee, J. (2010). Antibodies are challenged. Indian Journal of Medical Sciences. 64:144-147.

Beck, A. et al., (2010). Strategies and challenges for the next generation of therapeutic antibodies. Nature Reviews. Immunology. 10:345-52.

Biotecnología y Biomedicina. (2013). Informe sectorial. Ayuntamiento de Barcelona, Barcelona, España.

Bowers, P.M. et al., (2013). Mammalian cell display for the discovery and optimization of antibody therapeutics. Methods. 65:44-56.

Brekke, O.H y Sandlie, I. (2003). Therapeutic antibodies for human diseases at the dawn of the twenty-first century. Nature Reviews. Drug Discovery 2:52-62.

Brennan, P.J. et al., (2009). Hypersensitivity reactions to mAbs: 105desensitizations in 23 patients, from evaluation to treatment. The Journal of Allergy and Clinical Immunology. 124:1259-66.

Buss, N.A. et al., (2012). Monoclonal antibody therapeutics: history and future. Current opinion in Pharmacology. 12: 615-622.

Campara, M. et al., (2010). Interleukin-2 receptor blockade with humanized monoclonal antibody for solid organ transplantation. Expert Opinion on Biological Therapy. 10:959-969.

Cao, H. et al., (2013). Brentuximab vedotin: first-line agent for advanced Hodgkin lymphoma. Anticancer Research. 33:3879-3885.

Carbajo-Pescador, S. et al., (2013). Inhibition of VEGF expression through blockade of Hif1 and STAT3 signalling mediates the anti-angiogenic effect of melatonin in HepG2 liver cancer cells. British Journal of Cancer. 109:83-91.

Carson, K.R. et al., (2009). Monoclonal antibody-associated progressive multifocal leucoencephalopathy in patients treated with rituximab, natalizumab, and efalizumab: a Review from the Research on Adverse Drug Events and Reports (RADAR) Project. Lancet Oncology. 10:816-824.

Casanova-Estruch, B. (2013). Safety profile and practical considerations of monoclonal antibody treatment. Neurologia. 28:169-178.

CDC. (2012). Centers for Disease Control and Prevention. Severe acute respiratory syndrome (SARS). http://www.cdc.gov/sars/index.html (acceso: 22/08/2014).

Chen, W. et al., (2012). Characterization of germline antibody libraries from human umbilical cord blood and selection of monoclonal antibodies to viral envelope glycoproteins: Implications for mechanisms of immune evasion and design of vaccine immunogens. Biochemical Biophysical Research Communications. 417:1164-1169.

Chen, W. et al., (2008). Human domain antibodies to conserved sterically restricted regions on gp120 as exceptionally potent cross-reactive HIV-1 neutralizers. Proceedings of the National Academy of Science of the United States of America. 105:17121-17126.

Ducancel, F. y Muller, B.H. (2014). Molecular engineering of antibodies for therapeutic and diagnostic purposes. Monoclonal Antibodies. 4:445-457.

Elshabrawy, H.A. et al., (2012). Human monoclonal antibodies against highly conserved HR1 and HR2 domains of the SARS-CoV spike protein are more broadly neutralizing. PLoSONE. 7:e50366.

EMA. (2013). European Medicines Agency. EU/3/13/1113. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/orphans/2013/04/human_orphan_001190.jsp&mid=WC0b01ac058001d12 (Acceso: 26/08/214).

Ereky, K. (1919). Biotechnologie der Fleisch-, Fett-, und Milcherzeugung im landwirtschaftlichen Grossbetriebe: für naturwissenschaftlich gebildete Landwirte verfasst. Parey, Berlin, Alemania.

Espiritu, M.J. et al., (2014). A 21st-century approach to age-old problems: the ascension of biologics in clinical therapeutics. Drug Discovery Today. pii: S1359-6446(14)00010-5.

Fowler, N.H. (2011). Role of maintenance rituximab (rituxan) therapy in the treatment of follicular lymphoma. P & T: A Peer-reviewed Journal for Formulary Management. 36:590-598.

Fox, J.L. (2006). Turning plants into protein factories. Nature Biotechnology. 24:1191-1193.

Friedrich, B.M. et al., (2012). Potential vaccines and post-exposure treatments for filovirus infections. Viruses. 4:1619-1650.

Genoma España. (2008). Anticuerpos monoclonales terapéuticos. Informe de Vigilancia Tecnológica. Fundación Española para el Desarrollo de la Investigación en Genómica y Proteómica-Fundación General de la Universidad Autónoma de Madrid, Madrid, España.

Giovannoni, G. et al., (2014). Daclizumab high-yield process in relapsingremitting multiple sclerosis (SELECTION): a multicentre, randomised, double-blind extension trial. Lancet Neurology. 13:472-481.

Goetsch, C.M. (2011). Genetic tumor profiling and genetically targeted cáncer therapy. Seminars in Oncology Nursing. 27:34-44.

Goodman, J.L. (2014). Studying "secret serums" - Toward safe, effective Ebola treatments. The New England Journal of Medicine. 371:1086-1089.

Hong, D.I. et al., (2012). Allergy to monoclonal antibodies: cutting-edge desensitization methods for cutting-edge therapies. Expert Review of Clinical Immunology. 8:43-52.

Hutfless, S. et al., (2014). Pharmacological management of Crohn's disease: future research needs. Agency for Healthcare Research and Quality, Rockville, Estados Unidos de América.

Kharfan-Dabaja, M.A. (2014). A new dawn for gemtuzumab ozogamicin? Lancet Oncology. 15:913-914.

Kim, S.J. et al., (2005). Antibody engineering for the development of therapeutic antibodies. Molecules and Cells. 20:17-29.

Kirkwood, J.M. et al., (2012). Immunotherapy of cancer in 2012. CA: A Cancer Journal for Clinicians. 62:309-335.

Kitson, S.L. et al., (2013). Radionuclide antibody-conjugates, a targeted therapy towards cancer. Current Radiopharmaceutical. 6:57-71.

Kleyman, K. y Weintraub, D.S. (2012). Monoclonal antibodies: longitudinal prescribing information analysis of hypersensitivity reactions. Monoclonal Antibodies. 4:392-397.

Köhler, G. y Milstein, C. (1975). Continuous cultures of fused cells secreting antobody of predefined specificity. Nature. 256: 495-497.

Kupczyk, M. y Kuna, P. (2014). Omalizumab in an allergology clinic: real life experience and future developments. Postepy Dermatologii Alergologii.31:32-35.

Linke, R. et al., (2010). Catumaxomab: clinical development and future directions. Monoclonal Antibodies. 2:129-136.

Marzi, A., (2012). Protective efficacy of neutralizing monoclonal antibodies in a nonhuman primate model of Ebola hemorrhagic fever. PLos ONE.7:e36192.

Mauriz, J.L. y González-Gallego, J. (2008). Antiangiogenic drugs: current knowledge and new approaches to cancer therapy. Journal of Pharmaceutical Science. 97:4129-4154.

Mauriz, J.L. et al., (2003). Antiangiogenic treatment of cáncer. Cirugia Española. 78:3-11.

Michnick, S.W. y Sidhu, S.S. (2008). Submitting antibodies to binding arbitration. Nature Chemical Biology. 4:326-329.

ONT, 2014. Organización Nacional de Trasplantes. http://www.ont.es/home/Paginas/ElModeloEspanol.aspx (acceso: 26/08/2014)

Pasut, G. (2014). Pegylation of biological molecules and potential benefits: pharmacological properties of certolizumab pegol. BioDrugs. 28 Suppl 1:15-23.

Pérez-Alvarez, R., (2011). Hepatitis B virus (HBV) reactivation in patients receiving tumor necrosis factor (TNF)-targeted therapy: analysis of 257 cases. Medicine (Baltimore). 90:359-371.

Pettitt, J. et al., (2013). Therapeutic intervention of Ebola virus infection in Rhesus macaques with the MB-003 monoclonal antibody cocktail. Science Translational Medicine. 5:199(ra)113.

Piaserico, S., (2014). Efficacy and safety of systemic treatments for psoriasis in elderly patients. Acta Dermato- Venereologica. 94:293-297.

Prabakaran, P. et al., (2012). Origin, diversity, and maturation of human antiviral antibodies analyzed by high-throughput sequencing. Frontiersin Mocrobiology. 3: 277.

Qiu, X. et al., (2013). Sustained protection against Ebola virus infection following treatment of infected nonhuman primates with ZMAb. Scientific Reports. 3:3365.

Rybar, I. et al., (2012). The effectiveness for prevention of tuberculosis in patients with inflammatory rheumatic diseases treated with TNF inhibitors. The International Journal Bratislava Medical Journal – Bratislavske lekarske listy. 109:164-167.

Scheffert, J.L. y Raza, K. (2014). Immunosuppression in lung transplantation. Journal of Thoracic Disease. 6:1039-1053.

Setoguchi, S. et al., (2006). Tumor necrosis factor alpha antagonist use and cáncer in patients with rheumatoid arthritis. Arthritis & Rheumatism. 54:2757-2764.

Shale, M.J. (2009). The implications of anti-tumour necrosis factor therapy for viral infection in patients with inflammatory bowel disease. British Medical Bulletin. 92:61-77.

Sidaway, P. (2014). Transplantation: Alemtuzumab induction reduces acute rejection risk. Nature Reviews Nephrology. En Prensa. doi: 10.1038/nrneph.2014.143.

Smith, J. et al., (2005). Antibody phage display technologies with special reference to angiogenesis. FASEB Journal. 19:331-341.

Smolen, J.S. et al., (2014). EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2013 update. Annals of the Rheumatic Disease. 73:492-509.

Sorensen, P.S. (2014). New management algorithms in multiple sclerosis. Current Opinion in Neurology. 27:246-259.

Strokappe, N. et al., (2012). Llama antibody fragments recognizing various epitopes of the CD4bs neutralize a broad range of HIV-1 subtypes A, B and C. PLoS ONE. 7:e33298.

Turner, T.L. et al., (2014). Respiratory syncytial virus: current and emerging treatment options. Journal of ClinicoEconomics and Outcomes Research. 6:217-225.

Watanabe, M. et al., (2011). Re-appearance of hepatitis B virus following therapy with rituximab for lymphoma is not rare in Japanese patients with past hepatitis B virus infection. Luver International. 31:340-347.

Webster, A. et al., (2006). Polyclonal and monoclonal antibodies for treating acute rejection episodes in kidney transplant recipients. Cochrane database of Systematic Reviews. 2:CD004756.

WHO. (2014). World Health Organization. Ebola virus disease. http://www.who.int/csr/disease/ebola/en/ (acceso: 21/08/2014).

Williams, C.J. et al., (2014). Systematic review with meta-analysis: malignancies with anti-tumour necrosis factor-α therapy in inflammatory bowel disease. Alimentary Pharmacology & Therapeutics. 39:447-458.

Woodworth, C.D. et al., (2005). Inhibition of the epidermal growth factor receptor increases expression of genes that stimulate inflammation, apoptosis, and cell attachment. Molecular Cancer Therapeutics. 4:650-665

Zebardast, N. et al., (2010). Rituximab in the management of refractory myasthenia gravis. Muscle & Nerve. 41:375-378.

Zhu, Z. et al., (2013). Human monoclonal antibodies as candidate therapeutics against emerging viruses and HIV-1. Virologica Sinica . 28:71-80.

Descargas

Publicado

2018-07-04

Cómo citar

Mauriz, J. L., Ordoñez, R., Prieto-Domínguez, N., & González Gallego, J. (2018). La biotecnología en la salud humana: el hito de los anticuerpos monoclonales. Ambiociencias, (12), 12–33. https://doi.org/10.18002/ambioc.v0i12.4944

Número

Sección

Biotecnología y salud humana

Artículos más leídos del mismo autor/a