Mecanismos moleculares del ejercicio físico en la enfermedad de Alzheimer

revisión sistemática

Autori

DOI:

https://doi.org/10.18002/ambioc.i22.8618

Parole chiave:

Alzheimer, ejercicio físico, patología tau, placas beta-amiloides

Abstract

La enfermedad de Alzheimer (EA), una de las patologías neurodegenerativas más prevalentes a nivel global, se caracteriza por un deterioro progresivo de la memoria y las funciones cognitivas, y carece actualmente de terapias curativas. Esta revisión tuvo como objetivo investigar sistemáticamente la evidencia sobre el impacto de la actividad física en los mecanismos moleculares de la EA y su influencia en el deterioro cognitivo. De los 229 artículos obtenidos en la búsqueda, se incluyeron 8 estudios en base a los criterios de elegibilidad. Los estudios evaluaron diversos protocolos de ejercicio y su efecto en procesos clave, como la acumulación de placas beta-amiloides, la formación de ovillos neurofibrilares, la neuroinflamación, el estrés oxidativo, y las alteraciones sinápticas y mitocon- driales. A lo largo de la revisión, se examinaron las interacciones entre estas vías, ofreciendo una visión integral de los mecanismos patológicos subyacentes a la enfermedad y evidenciando que la actividad física ayuda a mitigar dichos procesos. Los resultados de esta revisión ponen de manifiesto el ejercicio como una intervención no farmacológica prometedora para ralentizar el avance de la EA.

Downloads

I dati di download non sono ancora disponibili.

Riferimenti bibliografici

Brandt, R., Trushina, N. I. y Bakota, L. 2020. Much more than a cytoskeletal protein: physiological and pathological functions of the non-microtubule binding region of tau. Frontiers in Neurology, 11:590059.

Chen, M., Wang, J., Jiang, J., Zheng, X. et al. 2017. APP modulates KCC2 expression and function in hippocampal GABAergic inhibition. eLife, 6:e20142.

Clarke, J. R., Lyra e Silva, N. M., Figueiredo, C. P., Frozza, R. L. et al. 2015. Alzheimer-associated Aβ oligomers impact the central nervous system to induce peripheral metabolic deregulation. EMBO Molecular Medicine, 7(2):190-210.

Delgado-Peraza, F., Nogueras-Ortiz, C., Simonsen, A. H., Knight, D. D. A. et al. 2023. Neuron-derived extracellular vesicles in blood reveal effects of exercise in Alz- heimer’s disease. Alzheimer’s Research and Therapy, 15(1):156.

Farias, J. M. D., Santos Tramontin, N., Pereira, E. V., de Moraes, G. L. et al. 2021. Physical exercise training improves judgment and problem-solving and modulates serum biomarkers in patients with Alzheimer’s disease. Molecular Neurobiology, 58(9):4217-4225.

Griffiths, J. y Grant, S. G. N. 2023. Synapse pathology in Alzheimer’s disease. Seminars in Cell and Developmental Biology, 139:13–23.

Guo, T., Zhang, D., Zeng, Y., Huang, T. Y. et al. 2020. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Molecular Neurodegeneration, 15(1):40.

Haberman, A., Williamson, W. R., Epstein, D., Wang, D. et al. 2012. The synaptic vesicle SNARE neuronal synaptobrevin promotes endolysosomal degradation and pre- vents neurodegeneration. Journal of Cell Biology, 196(2):261-276.

Hao, Z., Liu, K., Zhou, L. y Chen, P. 2023. Precious but convenient means of prevention and treatment: physiological molecular mechanisms of interaction between exercise and motor factors and Alzheimer’s disease. Frontiers in Physiology, 14:1193031.

Hashiguchi, D., Campos, H. C., Wuo-Silva, R., Faber, J. et al. 2020. Resistance exercise decreases amyloid load and modulates inflammatory responses in the APP/ PS1 mouse model for Alzheimer’s disease. Journal of Alzheimer’s Disease, 73(4):1525-1539.

Heneka, M. T., Kummer, M. P. y Latz, E. 2014. Innate immune activation in neurodegenerative disease. Nature Reviews Immunology, 14(7):463-477.

Huang, W. J., Zhang, X. y Chen, W. W. 2016. Role of oxidative stress in Alzheimer’s disease (review). Biomedical Reports, 4(5):519-522.

Jack, C. R., Bennett, D. A., Blennow, K., Carrillo, M. C. et al. 2018. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s and Dementia, 14(4):535-562.

Jia, R. X., Liang, J. H., Xu, Y. y Wang, Y. Q. 2019. Effects of physical activity and exercise on the cognitive function of patients with Alzheimer disease: A meta-analysis. BMC Geriatrics, 19(1):181.

Kametani, F. y Hasegawa, M. 2018. Reconsideration of amyloid hypothesis and tau hypothesis in Alzheimer’s disease. Frontiers in Neuroscience, 12:25.

Khodadadi, D., Gharakhanlou, R., Naghdi, N., Salimi, M. et al. 2018. Treadmill exercise ameliorates spatial learning and memory deficits through improving the clear- ance of peripheral and central amyloid-beta levels. Neurochemical Research, 43(8):1561-1574.

Kim, E., Kim, H., Jedrychowski, M. P., Bakiasi, G. et al. 2023. Irisin reduces amyloid-β by inducing the release of neprilysin from astrocytes following downregulation of ERK-STAT3 signaling. Neuron, 111(22): 3619-3633.

Leng, F. y Edison, P. 2021. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nature Reviews Neurology, 17(3):157-172.

Liang, H. y Ward, F. W. 2006. PGC-1alpha: a key regulator of energy metabolism. Advances in Physiology Education, 30(4):145-51.

Liu, T., Zhang, L., Joo, D. y Sun, S. C. 2017. NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy, 2:17023.

Liu, Y., Chu, J. M. T., Yan, T., Zhang, Y. et al. 2020. Short-term resistance exercise inhibits neuroinflammation and attenuates neuropathological changes in 3xTg Alz- heimer’s disease mice. Journal of Neuroinflammation, 17(1):4.

Maphis, N., Xu, G., Kokiko-Cochran, O. N., Jiang, S. et al. 2015. Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain. Brain, 138(6):1738-1755.

Mijalkov, M., Volpe, G., Fernaud-Espinosa, I., DeFelipe, J. et al. 2021. Dendritic spines are lost in clusters in Alzheimer’s disease. Scientific Reports, 11(1):12350.

Mota, B. C. y Sastre, M. 2021. The role of pgc1α in alzheimer’s disease and therapeutic interventions. International Journal of Molecular Sciences, 22(11):5769.

Nagar, P., Sharma, P., Dhapola, R., Kumari, S. et al. 2023. Endoplasmic reticulum stress in Alzheimer’s disease: molecular mechanisms and therapeutic prospects. Life Sciences, 330:121983.

Nichols, E., Steinmetz, J. D., Vollset, S. E., Fukutaki, K. et al. 2022. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. The Lancet Public Health, 7(2):e105-e125

Pigino, G., Morfini, G., Atagi, Y., Deshpande, A. et al. 2009. Disruption of fast axonal transport is a pathogenic mechanism for intraneuronal amyloid beta. Proceed- ings of the National Academy of Sciences, 106(14):5907-5912.

Sheng, Z. H. y Cai, Q. 2012. Mitochondrial transport in neurons: Impact on synaptic ho- meostasis and neurodegeneration. Nature Reviews Neuroscience, 13(2):77-93.

Siddappaji, K. K. y Gopal, S. 2021. Molecular mechanisms in Alzheimer’s disease and the impact of physical exercise with advancements in therapeutic approaches. AIMS Neuroscience, 8(3):357-389.

Sinsky, J., Pichlerova, K. y Hanes, J. 2021. Tau protein interaction partners and their roles in Alzheimer’s disease and other Tauopathies. International Journal of Molecular Sciences, 22(17): 9207.

Storck, S. E., Meister, S., Nahrath, J., Meißner, J. N. et al. 2016. Endothelial LRP1 transports amyloid-β1-42 across the blood-brain barrier. Journal of Clinical Investi- gation, 126(1):123-36.

Therriault, J., Pascoal, T. A., Lussier, F. Z., Tissot, C. et al. 2022. Biomarker modeling of Alzheimer’s disease using PET-based Braak staging. Nature Aging, 2(6):526- 535.

Tokutake, T., Kasuga, K., Yajima, R., Sekine, Y. et al. 2012. Hyperphosphorylation of tau induced by naturally secreted amyloid-β at nanomolar concentrations is modulated by insulin-dependent Akt-GSK3β signaling pathway. Journal of Biological Chemistry, 287(42): 35222-35233

Wang, X., Su, B., Lee, H. G., Li, X. et al. 2009. Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. Journal of Neuroscience, 29(28): 9090-9103.

Wrann, C. D., White, J. P., Salogiannnis, J., Laznik-Bogoslavski, D. et al. 2013. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metabolism, 18(5):649-659.

Wu, C., Yang, L., Li, Y., Dong, Y. A. N. et al. 2020. Effects of exercise training on anxious-depressive-like behavior in Alzheimer rat. Medicine and Science in Sports and Exercise, 52(7):1456-1469

Xia, J., Li, B., Yin, L., Zhao, N. et al. 2019. Treadmill exercise decreases β-amyloid burden in APP/PS1 transgenic mice involving regulation of the unfolded protein response. Neuroscience Letters, 703: 125-131

Yang, L., Wu, C., Li, Y., Dong, Y. et al. 2022. Long-term exercise pre-training attenuates Alzheimer’s disease–related pathology in a transgenic rat model of Alzheimer’s disease. GeroScience, 44(3):1457-1477

Yang, L., Youngblood, H., Wu, C. y Zhang, Q. (2020). Mitochondria as a target for neuroprotection: role of methylene blue and photobiomodulation. Translational Neurodegeneration, 44(3):1457-1477.

Zhang, X., He, Q., Huang, T., Zhao, N. et al. 2019. Treadmill exercise decreases Aβ deposition and counteracts cognitive decline in APP/PS1 mice, possibly via hippocampal microglia modifications. Frontiers in Aging Neuroscience, 11:78.

Pubblicato

2025-01-24

Come citare

Redondo Cadenas, M., Cuevas, M. J., & Estébanez, B. (2025). Mecanismos moleculares del ejercicio físico en la enfermedad de Alzheimer: revisión sistemática. Ambiociencias, (22), 31–43. https://doi.org/10.18002/ambioc.i22.8618

Fascicolo

Sezione

Poniendo en claro

Puoi leggere altri articoli dello stesso autore/i