A prototype of an open hardware-based automatic photographic camera to monitor snow cover evolution and weather phenomena in the context of the frozen ground monitoring: Permarduino-camera = Un prototipo de una cámara fotográfica automática basada en hardware abierto para monitorear la evolución de la capa de nieve y los fenómenos meteorológicos en el contexto del monitoreo del suelo helado: Permaduino-camera

Autores

  • M.A. de Pablo Departamento de Geología, Geografía y Medio Ambiente Universidad de Alcalá
  • C. de Pablo S. Especialista en electrónica Madrid
  • M. Ramos Departamento de Física y Matemáticas Universidad de Alcalá
  • M. Prieto Departamento de Automática Universidad de Alcalá

DOI:

https://doi.org/10.18002/pol.v0i28.4292

Palavras-chave:

Frozen ground, Snow cover, Digital automatic camera, Instrumentation

Entidades:

Projects PERMASNOW (CTM2014-52021-R), ANTARPERMA (CTM2011-15565-E), PERMAPLANET (CTM2009-10165E), PERMAMODEL (POL2006-01918), and PERMATHERMAL. Ministry of Economy and Competitiveness, and the Ministry of Education and Science, Spain

Resumo

The study of permafrost and active layer thermal behavior require continuous monitoring of ground temperatures as well as other additional parameters, including snow cover, because of its isolation effect when the thickness is enough high. Typical monitoring stations from Thermal State of Permafrost (TSP) network includes the air temperature monitor-ing to derive snow thickness. Moreover, its low snow deep accuracy, this device return data from one place each time. To know and study the snow onset, offset, duration and distribution is sometimes required and the use of automatic digital photographic cameras contribute to have an adequate approach. However, commercial automatic cameras are expensive. For that reason, we developed a robust, simple, low-cost, open hardware-based (Arduino) prototype of an automatic camera to take pictures and store them into an SD card (2 Gb) that allows more than 4 years of hourly continuous image acquisition. The device is powered by a small solar cell that charges a li-po battery. The firmware allows a detailed monitoring of the device and error detection, and configure the camera for its own. We used a TTL serial JPEG camera with CMOS ¼ inch sensor with 480x640 pixels in resolution, with NTCS video capacity to allow real-time camera focus. The camera acquires images on panchromatic and near IR band. The fully operative prototype has been tested in Antarctica, and it was finally installed in Byers Peninsula in order to study the snow cover evolution at the Limnopolar Lake CALM site. In this work we present the prototype and its firmware to allow others to develop their own cameras to monitor snow cover or any other phenomenological parameter.

El estudio permafrost y la capa activa requiere de la medición continuada de la temperatura del terreno, y de otros parámetros adicionales, incluyendo el espesor de la capa de nieve debido al efecto aislante que puede tener. Las estaciones típicas de estudio térmico del permafrost (TSP en inglés), incluye la medida de la temperatura del aire a diferentes alturas para derivar el espesor aproximado de la capa de nieve. Más allá de la baja resolución de este método, estos termonivómetros sólo facilitan datos de un punto del territorio. Sin embargo, conocer y estudiar la evolución y distribución de la cubierta de nieve requiere en muchos casos del uso de cámara fotográficas automáticas, con el problema del alto coste de las mismas. Por ello, hemos desarrollado un dispositivo robusto, simple, de bajo coste, y basado en el uso de hardware libre (Arduino), capaz de tomar fotografías y almacenarlas en una tarjeta de memoria SD (2 Gb) con capacidad para más de 4 años de actividad continuada. Este dispositivo está alimentado por una placa solar y una batería Li-po. La cámara usada permite obtención de imágenes JPEG mediante el uso de un sensor CMOS de ¼ de pulgada e imágenes de hasta 480x640 píxeles de resolución. Además, dispone de salida NTCS de video que facilita las tareas de enfoque en el campo. La cámara adquiere imágenes en el rango pancromático e infrarrojo cercano. El prototipo funcional del dispositivo fue probado en la Antártida, e instalado finalmente en la península Byers para estudiar la evolución de la capa de nieve en el emplazamiento CALM Limnopolar Lake. En este trabajo se presenta el prototipo y su configuración para permitir a otros desarrollar sus propias cámaras para el seguimiento de la cubierta de nieve u otros fenómenos meteorológicos.

Downloads

Não há dados estatísticos.

Métricas alternativas

Referências

BANZI, M. (2011): Getting started with Arduino. O’Reilly Media, Inc.

BAYLE, J. (2013): C programming for Arduino. O’Reilly Media, Inc.

BLUM, J. (2013): Exploring Arduino: Tools and Techniques for Engineering Wizardry. O’Reilly Media, Inc. BROWN, J.; NELSON, F.E.; and HINKEL, K.M. (2000): «The circumpolar active layer monitoring (CALM) program research designs and initial results». Polar Geography, 3, 165–258.

BOCKHEIM, J.G. (2006): «Permafrost distribution in the southern circumpolar region and its relation to the environment: a review and recommendations for further research». Permafrost and Periglacial Processes, 6, 27-45.

BOCKHEIM, J.; VIEIRA, G.; RAMOS, M.; LÓPEZ-MARTÍNEZ, J.; SERRANO, E.; GUGLIELMIN, M.; WILHELM, K.; and NIEUWENDAM, A. (2013): «Climate warming and permafrost dynamics in the Antarctic Peninsula region». Global and Planetary Change, 100, 215–223. doi: 10.1016/j.gloplacha.2012.10.018.

CAMACHO, A.; VILLAESCUSA, J.A.; ROCHERA, C.; and JØRGENSEN, S.E. (2014): «Modeling the response of the planktonic microbial community to warming effects in maritime antarctic lakes: Ecological implications». Developments in Environmental Modelling, 26(9). 231-250.

DANBY, R. and HIK, D. (2007): «Responses of white spruce (Picea glauca) to experimental warming at subsurface alpine treeline». Global Change Biology, 13, 437–451.

DE PABLO, M.A.; DE PABLO, C.; and RAMOS, M. (2014b): «A prototype of an open hardware-based device for active layer and frozen ground monitoring: PERMARDUINO». 4th European Conference on Permafrost. Évora (Portugal). Abstracts, 444.

DE PABLO, M.A.; DE PABLO, C.; and RAMOS, M. (2015): «Improvements on PERMARDUINO prototype device for active layer and permafrost thermal monitoring, and automatic digital camera development». VI Congreso Ibérico de la International Permafrost Association. Valladolid, Spain. Abstracts, 23.

DE PABLO, M.A.; RAMOS, M.; VIEIRA, G.; and QUESADA, A. (2010): «A new CALM-S site on Byers Peninsula, Livingston Island, Antarctica». In: Ambientes Periglaciares, Permafrost y Variabilidad Climática: II Congreso Ibérico de la International Permafrost Association, edited by: BLANCO, J.J.; DE PABLO, M.A.; and RAMOS, M.; Servicio de Publicaciones de la Universidad de Alcalá, Alcalá de Henares, 153–159.

DE PABLO, M. A.; BLANCO, J. J.; MOLINA, A.; RAMOS, M.; QUESADA, A.; and VIEIRA, G. (2013): «Interannual active layer variability at the Limnopolar Lake CALM site on Byers Peninsula, Livingston Island, Antarctica». Antarctic Science, 25, 167–180. doi: 10.1017/S0954102012000818.

DE PABLO, M.A.; RAMOS, M. and MOLINA, A. (2014a): «Thermal characterization of the active layer at the Limnopolar Lake CALM-S site on Byers Peninsula (Livingston Island), Antarctica». Solid Earth, 5. 721-739.

DE PABLO, M.A.; RAMOS, M. and MOLINA, A. (2016): «Snow cover evolution at the Limnopolar Lake CALM-S site on Byers Peninsula, Livingston Island, Antarctica, 2009-2014». Catena. In press

DEWALLE, D. and RANGO, A. (2008): Principles of Snow Hydrology. New York: Cambridge University Press. 428 pp. ISBN 978-0-521-82362-3.

DI JUSTO, P. and GERTZ, E. (2012): Atmospheric monitoring with Arduino. O’Reilly Media, Inc.

EVANS, B. (2011): Beginning Arduino programming. Apress Inc.

GERTZ, E. and di Justo, P. (2012): Environmental monitoring with Arduino. O’Reilly Media, Inc.

GOODRICH, L.E. (1982): «The influence of snow cover on the ground thermal regime». Canada Geotechnical Journal, 19, 421 – 432.

HARRIS, C.; HAEBERLI, W.; VONDER MÜHLL, D.; and KING, L. (2001): «Permafrost monitoring in the high mountains of Europe: the PACE project in the global context». Permafrost and Periglacial Processes, 12(1), 3–11.

HINKEL, K.M. (1997): «Estimating seasonal values of thermal diffusivity in thawed and frozen soils using temperature time series». Cold Regions Science and Technology, 26, 1–15.

LEWKOWICZ, A. G. (2008): «Evaluation of miniature temperature-loggers to monitor snowpack evolution at mountain permafrost sites, northwestern Canada». Permafrost and Periglacial Processes, 19, 323–331. doi: 10.1002/ppp.625

MARGOLIS, M. (2011): Arduino cookbook (2nd Edition). O’Reilly Media, Inc.

MATSUOKA, N. (2006): «Monitoring periglacial processes: towards construction of a global network». Geomorphology, 80, 20–31.

MATSUOKA, N. and HUMLUM, O. (2003): «Monitoring periglacial processes: new methodology and technology». Permafrost and Periglacial Processes, 14, 299–303.

Monks, S. (2012): Programming Arduino: Getting started with sketches. McGraw-Hill.

NELSON, F.E.; SHIKLOMANOV, N.I.; HINKEL, K. and CHRISTIANSEN, H. (2004): «Introduction: the Circumpolar Active Layer Monitoring Network (CALM) workshop and CALM II program». Polar Geography, 28, 253–266.

NELSON, F.E. and SHIKLOMANOV, N.I. (2009): «The Circumpolar Active Layer Monitoring Network–CALM III (2009–2014): long-term observations on the ‘‘Climate-Active Layer-Permafrost System’’». En BLANCO, J.J.; DE PABLO, M.A. and RAMOS, M. (eds.) Ambientes periglaciares, permafrost y variabilidad Climática: II Congreso Ibérico de la International Permafrost Association. Alcalá de Henares: Servicio de Publicaciones de la Universidad de Alcalá, 9–14.

RAMOS, M.; HASLER, A.; VIEIRA, G.; GRUBER, S. and HAUCK, C. (2009): «Setting up boreholes for permafrost thermal monitoring on Livingston Island in the Maritime Antarctic». Permafrost and Periglacial Processes, 20, 57–64.

RAMOS, M.; VIEIRA, G.; BLANCO, J.J.; GRUBER, S.; HAUCK, C.; HIDALGO, M.A. and TOME, D. (2008): «Thermal active layer monitoring in two different sites on Livingston Island during the last seven years: a comparative study». In Proceedings of the Ninth International Conference on Permafrost, Fairbanks, Alaska. Fairbanks, AK: University of Alaska, Institute of Northern Engineering, 1463–1467.

TIMMIS, H. (2011): Practical Arduino engineering. Apres Inc.

TURNER, J.; LACHLAN-COPE, T.A.; COLWELL, S.; MARSHALL, G.J. and CONNERLLEY, W.M. (2007): «Significant warming of the Antarctic winter troposphere». Science, 131, 1914–1917.

VIEIRA, G.; BOCKHEIM, J.; GUGLIELMIN, M.; BALKS, M.; ABRAMOV, A.; BOELHOUWERS, J.; CANNONE, N.; GANZERT, L.; GILICHINSKY, D.A.; GOTYACHKIN, S.; LÓPEZ-MARTÍNEZ, J.; MEIEKLEJOHN, I.; RAFFI, R.; RAMOS, M.; SCHAEFER, C.; SERRANO, E.; SIMAS, F.; SLETTEN, R. and WAGNER, D. (2010): «Thermal state of permafrost and active-layer monitoring in the Antarctic: advances during the International Polar Year 2007–2009». Permafrost and Periglacial Processes, 21, 182–197.

ZHANG, T. (2005): «Influence of the seasonal snow cover on the ground thermal regime: An overview». Rev. Geophys.; 43. RG4002. doi:10.1029/2004RG000157

ZHANG, T.; BARRY, R.G.; KNOWLES, K.; LING, F.; and ARMSTRONG, R.L. (2003): «Distribution of seasonally and perennially frozen ground in the Northern Hemisphere». In: Proceedings of the 8th International Conference on Permafrost, 21-25 July 2003, Zurich, Switzerland [Phillips, M.; S.M. Springman, and L.U. Arenson (eds.)]. A.A. Balkema, Lisse, the Netherlands, pp. 1289–1294.

Publicado

2016-10-11

Como Citar

Pablo, M. de, Pablo S., C. de, Ramos, M., & Prieto, M. (2016). A prototype of an open hardware-based automatic photographic camera to monitor snow cover evolution and weather phenomena in the context of the frozen ground monitoring: Permarduino-camera = Un prototipo de una cámara fotográfica automática basada en hardware abierto para monitorear la evolución de la capa de nieve y los fenómenos meteorológicos en el contexto del monitoreo del suelo helado: Permaduino-camera. Polígonos. Revista de Geografía, (28), 161–181. https://doi.org/10.18002/pol.v0i28.4292